• Title/Summary/Keyword: breaking waves

Search Result 232, Processing Time 0.027 seconds

Wave Simulation on Youngil Bay by WAM Extended to Shallow Water (천해역으로 확장된 WAM모형에 의한 영일만 파랑모의)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.511-520
    • /
    • 2007
  • WAM(WAve Model), deep water wave model has been extended to the region of shallow water, incorporating wave breaking, and triad wave interaction. To verify the model, numerical simulation of waves in Youngil bay, Pohang is performed and the simulated results show good agreements with measured wave data sets, one station at the mouth of bay and two stations inside the bay. As waves propagate toward the shore, wave height gradually diminishes by bottom friction and wave breaking, and wave direction, initially NE changes normal to the shore due to depth refraction.

Experimental and Numerical Analyses for Irregular Wave Breaking over a Shelf Region (Shelf 지형에서 불규칙파의 쇄파실험 및 수치해석)

  • Lee, Jong-In;Kim, Young-Taek
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.491-504
    • /
    • 2013
  • In this study, wave breakings over a shelf region are investigated under irregular wave conditions through laboratory experiments in a wave flume. Numerical simulations based on the Boussinesq-type equations are also conducted. The characteristics of breaking waves such as significant wave height, crest and trough heights, the mean water level and the stable wave height are obtained by analyzing laboratory measurements in detail. Obtained results are compared with those of the Boussinesq-type equations model. A very reasonable agreements is observed. The broken waves over a horizontal bottom asymptotically approach a stable wave height($H_{stable}$). In this study, the relative stable wave height is found as $H_{stable}/h{\fallingdotseq}0.56$ for irregular wave.

Instability of Plunging Breaking Wave Impact on Inclined Cylinder (경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰)

  • Hong, Key-Yong;Shin, Seung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • Impact on cylindrical surface caused by plunging breaking waves is investigated experimentally. The breaking waves are generated in a wave flume by decreasing the wave maker frequencies linearly and focusing the generated wave components at one specific location. The breaking wave packets are based on constant wave steepness spectrum. Three inclination angles of cylinder are applied to examine the effect of contact angle between cylinder and front surface of breaking waves. Also, the effect of cylinder diameter on pressure distribution and its peak value is investigated by adopting three cylinders with different diameters. The longitudinal location of cylinder is slightly moved in eight different points to find out a probable maximum value of impact pressure. The pressures and total force on cylinder surface are measured by piezo-electric pressure sensors and 3-components load cell with 30kHz sampling rate. The variation of peak impact pressures and forces is analyzed in terms of cylinder diameter, inclination angle and location. Also, the pressure distribution on cylindrical surface is examined. The cylinder location and surface position are more important parameters that govern the magnitude and shape of peak pressures, while the cylinder diameter and inclined angle are relatively insignificant. In a certain conditions, the impact phenomenon becomes very unstable which results in a large variation of measured valves in repeated runs.

  • PDF

Numerical Simulation of the Flows and Breaking Phenomena for the Design for High Speed Vessels (고속선 설계를 위한 유동계산 및 쇄파현상)

  • 박명규;곽승현
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.3
    • /
    • pp.85-92
    • /
    • 1993
  • In connection to the design of high speed vessels, the numerical simulation is carried out to make clear the property of flows and breaking phenomena around the catamaran. It is because the bradking phenome-non is closely related to the free-surface turbulent flow. The free-surface wave and transverse velocity vectors are calculated around the twin and demi hull of the catamaran. Computed results are applied to detect the appearance of sub-breaking waves around the hull. The critical condition for their appearance is studied at two Froude numbers of 0.45 and 0.95. The nu-merical analysis shows that the breaking is more serious near the twin hull rather the demi hull. To simu-late the flows, the Navier-Stokes solver is invoked with a free-surface. The computation is made only in half a domain because it is symmetric in the shape.

  • PDF

Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike

  • Yang, Xing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Plunging breaker slamming pressures on vertical or sloping sea dikes are one of the most severe and dangerous loads that sea dike structures can suffer. Many studies have investigated the impact forces caused by breaking waves for maritime structures including sea dikes and most predictions of the breaker forces are based on empirical or semi-empirical formulae calibrated from laboratory experiments. However, the wave breaking mechanism is complex and more research efforts are still needed to improve the accuracy in predicting breaker forces. This study proposes a semi-empirical formula, which is based on impulse-momentum relation, to calculate the slamming pressure due to plunging wave breaking on a sloping sea dike. Compared with some measured slamming pressure data in two literature, the calculation results by the new formula show reasonable agreements. Also, by analysing probability distribution function of wave heights, the proposed formula can be converted into a probabilistic expression form for convenience only.

A Study on Flow Structure of Breaking Wave through PIV Analysis (PIV기법을 활용한 쇄파의 유동구조 해석)

  • Jo, Hyo-Jae;Lee, Eon-Ju;Doh, Deog-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • This paper compares theoretical wave profile and particle kinematics with experimental results generated by a 2 D wave tank. Particle velocity fields of compound waves were acquired using a PIV technique. Synchronization was applied to acquire images of the wave fields, and the time gap between these images was controlled by the user. This technique was applied to investigate the wave breaking mechanism, and the wave profile and velocity distribution in a wave breaking field was obtained.

Numerical Simulation of Floating Body Motion in Surface Waves by use of a Particle Method (입자법을 이용한 파랑중 부유체 운동의 수치시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • A particle method recognized as one of gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods in order to solve the flow field with complicated boundary shapes. In the present study, breaking waves with a floating body are simulated to investigate fluid-structure interactions in the coastal zone.

  • PDF

Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field (잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구)

  • 배기성;허동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

Experimental Study on Impact Pressure at the Crown Wall of Rubble Mound Seawall and Velocity Fields using Bubble Image Velocimetry (기포영상유속계와 복합파고계를 활용한 경사식 호안 전면에서 쇄파의 형태에 따른 충격쇄파압의 분류)

  • Na, Byoungjoon;Ko, Haeng Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.119-127
    • /
    • 2022
  • To investigate varying wave impact pressure exerting at the crest wall of rubble mound seawall, depending on breaking wave properties, regular waves with different wave periods were generated. Wave velocity fields and void fraction were measured using bubble image velocimetry and simple combined wave gauge system (Na and Son, 2021). For the waves with shorter wave period, maximum horizontal velocity was less reduced compared to incident wave speed while breaking-induced air entrainment was occurred intensely, leading to a significant reduction of wave impact pressure at the crest wall. For the waves with longer wave periods, less air wave entrained and the wave structure followed a flip-through mode (Cooker and Peregrine, 1991), resulting in an abrupt increase of the impact pressure.