• Title/Summary/Keyword: breaker capacity

Search Result 95, Processing Time 0.022 seconds

태양광 발전이 연계된 DC 마이크로 그리드의 시뮬레이션 (Simulation of DC Microgrid with PV Generation)

  • 박철원
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.267-273
    • /
    • 2017
  • In recent years, there is an increasing demand for DC microgrid because the digital load due to DC increases and the efficiency of the distribution system increases due to loss of conversion losses and conversion stages due to reactive power compared to AC distribution. Currently, with the support of the KEPRI, the development of an electronic large-capacity circuit breaker for DC distribution protection, which has been underway since 2016, is proceeding. In this paper, as a part of this project, we modeled the DC microgrid connected with PV using PSCAD. The converter station, AC/DC converter control, PV and MPPT controller are designed. In order to evaluate the performance of the modeled DC microgrid, it is examined whether the voltage is adjusted according to the load variation.

Fluctuating Reduction Method for Generation Power of the Wind-PV Hybrid System

  • Oh, Jin-Seok;Lee, Ji-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.80-85
    • /
    • 2004
  • This paper reports the performance of a CB (Circuit Breaker) and converter for the battery operated Wind-PV (Photovoltaic) system. For this purpose, a fluctuating reduction controller for an electric generation hybrid (wind+PV) system is suggested. The method operates a wind turbine, PV, CB, converter and battery. Integration of wind and PV sources, which are generally complementary, usually reduce the capacity of the battery. Also, CB controls the overvoltage of the generation system. The objective is to control the operation of the converter and the CB and reduce power fluctuation. This paper includes discussion on system performance, power quality, fluctuation and effect of the randomness of the wind.

합성시험법을 이용한 진상소전류 성능검증에 관한 고찰 (Review for verification of capacitive current performance by using synthetic testing method)

  • 박승재;김용식;박용환;김맹현;고희석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.466-467
    • /
    • 2006
  • Several synthetic testing methods have widely been used for the performance evaluation of ultra high-voltage circuit breaker. Among these synthetic method, in the paper, capacitance switching testing method which can meet the test requirements and increase the testing capacity has been proposed. This method is made up of two separated sources of short-circuit generator for current source and L-C resonance circuit for voltage source. By using this method, KERI will perform the performance evaluation of capacitive current switching performance for the 800kV GCB(Gas Circuit Breaker).

  • PDF

저항형초전도한류기 과도특성을 고려한 EMTDC 모델개발 (Development of EMTDC model for Resistance type Fault Current Limiter considering transient characteristic)

  • 윤재영;김종율;이승렬
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.1-7
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO(Korea Electric Power Co-Operation) system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(High Voltage Direct Current-Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor -Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC(Electro-Magnetic Transient Direct Current) model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching phenomena occur.

퀸칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링 (Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic)

  • 윤재영;김종율;이승렬
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권2호
    • /
    • pp.73-79
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

분할격자법을 이용한 초고압 가스차단기 유동해석 (The Application of Cartesian Cut Cell Method for a High-Voltage GCB)

  • 이종철;안희섭;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.91-94
    • /
    • 2002
  • It is important to develop new effective technologies for increasing the interruption capacity and reducing the size of a GCB (Gas Circuit Breaker). It is not easy to test the real GCB model in practice as in theory. Therefore, a simulation tool based on a CFD (Computational Fluid Dynamics) algorithm has been developed to facilitate an optimization of the interrupter. But the choice of grid is not at all trivial in the complicated geometries like a GCB. In this paper, we have applied a CFD-CAD integration using Cartesian cut-cell method, which is one of the grid generation techniques for dealing with complex and multi-component geometries.

  • PDF

국내 실계통에서의 154kV 초전도한류기 계통적용 가능성 검토 (Feasibility Study on the Application of 154kV HTS-FCL in Korean Power System)

  • 이승렬;김종율;최흥관;윤재영
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권12호
    • /
    • pp.661-669
    • /
    • 2004
  • As the load density of KEPCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL (High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application plication of 154kV HTS-FCL in Korean power system.

R-type HTS-FCL Model considering transient characteristics

  • Yoon Jae Young;Lee Seung Ryul;Kim Jong Yul
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권2호
    • /
    • pp.35-38
    • /
    • 2005
  • One of the most serious problems in KEPCO system operation is higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the resistance type HTS-FCL(High Temperature Superconductor Fault Current Limiter) can be one of the most attractive alternatives to solve the fault current problem. To evaluate the accurate transient performance of resistance type HTS-FCL, it is needed that the dynamic simulation model considering transient characteristics during quenching and recovery state. Under this background, this paper presents the EMTDC model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching and recovery phenomena by fault current injection and clearing occurs.

Weil-Dobke 합성단락 시험회로의 Parameter 분석과 최적화 (Analysis and optimization of Wiel-Dobke synthetic testing circuit parameters)

  • 김맹현;류형기;박종화;고희석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.623-627
    • /
    • 1995
  • This paper describes analysis and optimization of Weil-Dobke synthetic testing circuit parameters, which is efficient and economical test method in high capacity AC circuit breaker. In this paper, analysis of synthetic short-circuit test circuit parameter proposed nondimensional factor that is reciprocal comparison value of circuit parameter and is not related to rated of circuit breaker, in particular, this study induce minimization of required energy of critical TRV generation specified in IEC 56 standards and present optimal design of synthetic short circuit testing facilities.

  • PDF

?칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링 (Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic)

  • 윤재영;김종율;이승렬
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권2호
    • /
    • pp.73-73
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.