• Title/Summary/Keyword: branched

Search Result 880, Processing Time 0.028 seconds

Successive Synthesis of Well-Defined Star-Branched Polymers by an Iterative Approach Based on Living Anionic Polymerization

  • Higashihara Tomoya;Inoue Kyoichi;Nagura Masato;Hirao Akira
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.287-299
    • /
    • 2006
  • To successively synthesize star-branched polymers, we developed a new iterative methodology which involves only two sets of the reactions in each iterative process: (a) an addition reaction of DPE or DPE-functionalized polymer to a living anionic polymer, and (b) an in-situ reaction of 1-(4-(4-bromobutyl)phenyl)-1-phenylethylene with the generated 1,1-diphenylalkyl anion to introduce one DPE functionality. With this methodology, 3-, 4-, and 5-arm, regular star-branched polystyrenes, as well as 3-arm ABC, 4-arm ABCD, and a new 5-arm ABCDE, asymmetric star-branched polymers, were successively synthesized. The A, B, C, D, and E arm segments were poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), poly(4-methylstyrene), polystyrene, and poly(4-tert-butyldimethylsilyloxystyrene), respectively. All of the resulting star-branched polymers were well-defined in architecture and precisely controlled in chain length, as confirmed by SEC, $^1H$ NMR, VPO, and SLS analyses. Furthermore, we extended the iterative methodology by the use of a new functionalized DPE derivative, 1-(3-chloromethylphenyl)-1-((3-(1-phonyletheny1)phenyl) ethylene, capable of introducing two DPE functionalities via one DPE anion reaction site in the reaction (b). The number of arm segments of the star-branched polymer synthesized by the methodology could be dramatically increased to 2, 6, and up to 14 by repeating the iterative process.

A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone) (수지상 폴리(알릴렌 이써 설폰)에 도입된 지방족 알킬사슬 연결자길이에 따른 음이온교환막의 특성 연구)

  • KIM, HYUN JIN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduction of these branched structures is an attempt to overcome the low ionic conductivity and stability problems that AEMs are currently facing. To this end, branched polymers with different spacer lengths were synthesized and properties of each membrane prepared according to the branched structure were compared. The chemical structure of the polymer was investigated by proton nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography, and the thermal properties were investigated using thermogravimetric analysis. The branched anion exchange membrane with (CH2)3 and (CH2)6 spacers exhibited ionic conductivities of 8.9 mS cm-1 and 22 mS cm-1 at 90℃, respectively. This means that the length of the spacer affects the ionic conductivity. Therefore, this study showing the effect of the spacer length on the ionic conductivity of the membrane in the polymer structure constituting the ion exchange membrane is judged to be very useful for future application studies of AEM fuel cells.

Preparation and Characterization of High Molecular Weight Poly(butylene succinate)

  • Han, Yang-Kyoo;Kim, Sung-Rim;Kim, Jinyeol
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • Poly(butylene succinate) (PBS) prepolymers were prepared by the condensation polymerization of 1,4-butanediol (1,4-BD) and succinic atid (SCA) in the presence of titanium (VI) isoproxide(TPI) catalyst. The PBS prepolymers reacted with 1,4-BD or SCA to obtain hydroxyl or carboxylic acid group terminated PBS. High molecular weight linear or branched PBS was synthesized by a coupling reaction between hydroxyl and carboxylic acid group terminated PBS, or by a branching reaction between carboxylic acid group terminated PBS and glycerol as a branching agent. The weight average molecular weight of the prepared linear or branched PBS was in the range of 100,000-220,000. Both melting point and thermal stability of the high molecular weight linear and branched PBSs were somewhat higher than those of general PBS. From a tensile behavior by Instron test, modulus, tensile strength and elongation at break improved with increase in the molecular weight of the prepared PBS through the coupling or the branching reaction. In particular, the high molecular weight linear PBS had about 2.5 times higher value in modulus than the branched one.

Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics

  • Taniguchi, Naoyuki;Korekane, Hiroaki
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.772-781
    • /
    • 2011
  • Branched N-glycans are produced by a series of glycosyltransferases including N-acetylglucosaminyltransferases and fucosyltransferases and their corresponding genes. Glycans on specific glycoproteins, which are attached via the action of glycosyltransferases, play key roles in cell adhesion and signaling. Examples of this are adhesion molecules or signaling molecules such as integrin and E-cadherin, as well as membrane receptors such as the EGF and TGF-${\beta}$ receptors. These molecules also play pivotal roles in the underlying mechanism of a variety of disease such as cancer metastasis, diabetes, and chronic obstructive pulmonary disease (COPD). Alterations in the structures of branched N-glycans are also hall marks and are useful for cancer biomarkers and therapeutics against cancer. This mini-review describes some of our recent studies on a functional glycomics approach to the study of branched N-glycans produced by N-acetylglucosaminyltransferases III, IV, V and IX (Vb) (GnT-III, GnT-IV, V and IX (Vb)) and fucosyltransferase 8 (Fut8) and their pathophysiological significance, with emphasis on the importance of a systems glycobiology approach as a future perspective for glycobiology.

Analysis of a Branched Crack in a Semi-Infinite Plate Under Tension and Bending Moment (인장과 굽힘을 받는 반무한 평판내의 분기균열 해석)

  • 김유환;범현규;박치용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.433-440
    • /
    • 2002
  • A branched crack in a semi-infinite plate under uniform tension and bending moment is considered in this study By using the superposition, the stress and moment intensity factors for the branched crack subjected to uniform tension and bending moment we evaluated. The stress intensity factors we obtained by using the finite element method and the J-based mutual integral. The moment intensity factors are calculated by extrapolating the values of the moment new the crack tip. Numerical results lot the normalized stress and moment Intensity factors we shown as functions of the ratio of branched crack length to main crack length and the branching angle.

Sythesis of Highly Branched Isomaltodextrin by Acceptor Reaction using Dextransucrases from L. mesenteroides B-742CB and B-512FMCM (Leuconostoc mesenteroides B-742CB와 B-512FMCM Dextransucrase의 수용체 반응을 이용한 고분지 Isomaltodextrin의 생산)

  • 김문수;이선옥;류화자;강희경;유선균;장석상;김도원;김도만;김성혁
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.200-206
    • /
    • 2001
  • In this study we tried to optimize the enzyme reaction conditions for the synthesis of highly branched isomaltodextrin (Mw > 2.5 kDa) using two dextransucrases from L. mesenteroides B-742CB and B-512FMCM that are dextransucrase constitutive mutants. As the concentration of sucrose or the ratio of maltose to sucrose increased, the amount of dextran decreased and the number and the amount of acceptor-products (of sucrose or maltose) increased. With high sucrose concentration (over 34%), there was more branched isomaltodextrin (as acceptor products) than dextran. When the ratio of sucrose to maltose was 2.5, there produced 86.7% of isomaltodextrin were produced. The Mw of dextrans, however, was over 2${\times}$10(sup)6 and there was no significant amounts of branched clinical dextran or high molecular weight oligosaccharides. With the combined activities of B-742CB dextransucrase and B-512FMCM dextransucrase we could synthesize high molecular weight branched isomaltodextrin (Mw>2.5 kDa). The high molecular weight dextran was composed of high branches as B-742CB dextran.

  • PDF

Synthesis and Characterization of Branched Sulfonated Poly(Ether Sulfone-ketone) Copolymer and Organic-inorganic Nano Composite Membranes

  • Lee, Dong-Hoon;Park, Hye-Suk;Seo, Dong-Wan;Hong, Tae-Whan;Ur, Soon-Chul;Kim, Whan-Gi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.489-490
    • /
    • 2006
  • Branched sulfonated poly(ether sulfone-ketone) copolymer was prepared with bisphenol A, 4,4-difluorobenzophenone, sulfonated chlorophenyl sulfone (40mole% of bisphenol A) and THPE (1,1,1-tris-p-hydroxyphenylethane). THPE was used 0.4 mol% of bisphenol A to synthesize branched copolymers. Organic-inorganic nano composite membranes were prepared with copolymer and a series of $SiO_2$ nanoparticles (20 nm, 4, 7 and 10 wt%). The composite membranes were cast from dimethylsulfoxide solutions. The films were converted from the salt to acid forms with dilute hydrochloric acid. The membranes were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. Branched copolymer and nano composite membranes exhibit proton conductivities from $1.12{\times}10^{-3}$ to $6.04{\times}10^{-3}\;S/cm^2$, water uptake from 52.9 to 62.4%, IEC from 0.81 to 1.21 meq/g and methanol diffusion coefficients from $1.2{\times}10^{-7}$ to $1.5{\times}10^{-7}\;cm^2/S$.

  • PDF

Changes of Growth Characteristics and Yield according to the Cultivation Types of Waxy Corn, Chalok 1

  • Huh, Chang-Suk;Kim, Jwo-Hwan;Park, Hong-Jib;Kim, Sung-Kook;Lee, Seong-Pill
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.351-354
    • /
    • 2003
  • The appearances of growth and yield according to the cultivation types were investigated in chalok 1. The days to harvest under double vinyl house, open mulching and open cultivation were 87.7, 95.8, and 101.8 days, respectively and significantly different in each cultivation types. The branched ears of open mulching, double vinyl house and open cultivation were started at 7,8, and 13 days after silking, respectively. The frequency of branched ear per total plants to double vinyl house, open cultivation and open mulching were 10%, 13%, and 19%, respectively. The ear weight of open mulching and open cultivation was superior to branched ear weight. The yields (kg/10a) of double vinyl house, open mulching and open cultivation were 755.7kg, 740.7kg, and 530.0kg, respectively. The yields(kg/10a) of double vinyl house and open mulching were significantly different to that of open cultivation and LSD(5%) was 133.42. Thus, early cultivations in double vinyl house were more beneficial than other cultivation types because of the highest yield and the lowest branched ear.

Transcriptome analysis of a transgenic Arabidopsis plant overexpressing CsBCAT7 reveals the relationship between CsBCAT7 and branched-chain amino acid catabolism

  • Kim, Young-Cheon;Lee, Dong Sook;Jung, Youjin;Choi, Eun Bin;An, Jungeun;Lee, Sanghyeob;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7-overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.

COXETER GROUPS AND BRANCHED COVERINGS OF LENS SPACES

  • Mednykh, Alexander;Vesnin, Andrei
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1167-1177
    • /
    • 2001
  • The groups generated by reflections in faces of Coxeter polyhedra in three-dimensional Thurstons spaces are considered. We develop a method for finding of finite index subgroups of Coxeter groups which uniformize three-dimensional manifolds obtained as two-fold branched coverings of manifolds of Heegaard genus one, that are lens spaces L(p, q) and the space S$^2$$\times$S$^1$.

  • PDF