Successive Synthesis of Well-Defined Star-Branched Polymers by an Iterative Approach Based on Living Anionic Polymerization

  • Higashihara Tomoya (Polymeric and Organic Materials Department, Graduate School of science and Engineering, Tokyo Institute of Technology) ;
  • Inoue Kyoichi (Polymeric and Organic Materials Department, Graduate School of science and Engineering, Tokyo Institute of Technology) ;
  • Nagura Masato (Polymeric and Organic Materials Department, Graduate School of science and Engineering, Tokyo Institute of Technology) ;
  • Hirao Akira (Polymeric and Organic Materials Department, Graduate School of science and Engineering, Tokyo Institute of Technology)
  • Published : 2006.06.01

Abstract

To successively synthesize star-branched polymers, we developed a new iterative methodology which involves only two sets of the reactions in each iterative process: (a) an addition reaction of DPE or DPE-functionalized polymer to a living anionic polymer, and (b) an in-situ reaction of 1-(4-(4-bromobutyl)phenyl)-1-phenylethylene with the generated 1,1-diphenylalkyl anion to introduce one DPE functionality. With this methodology, 3-, 4-, and 5-arm, regular star-branched polystyrenes, as well as 3-arm ABC, 4-arm ABCD, and a new 5-arm ABCDE, asymmetric star-branched polymers, were successively synthesized. The A, B, C, D, and E arm segments were poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), poly(4-methylstyrene), polystyrene, and poly(4-tert-butyldimethylsilyloxystyrene), respectively. All of the resulting star-branched polymers were well-defined in architecture and precisely controlled in chain length, as confirmed by SEC, $^1H$ NMR, VPO, and SLS analyses. Furthermore, we extended the iterative methodology by the use of a new functionalized DPE derivative, 1-(3-chloromethylphenyl)-1-((3-(1-phonyletheny1)phenyl) ethylene, capable of introducing two DPE functionalities via one DPE anion reaction site in the reaction (b). The number of arm segments of the star-branched polymer synthesized by the methodology could be dramatically increased to 2, 6, and up to 14 by repeating the iterative process.

Keywords

References

  1. B. J. Bauer and L. J. Fetters, Rubber Chem. Technol., 51, 406 (1978) https://doi.org/10.5254/1.3535747
  2. S. Bywater, Adv. Polym. Sci., 30, 89 (1979) https://doi.org/10.1007/3-540-09199-8_2
  3. J. Roovers, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, 1989, Vol. 2, pp 478-499
  4. P. Rempp and J. E. Herz, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, 1989, Suppl. Vol., pp 493-510
  5. L. J. Fetters and E. L. Tomas, in Material Science and Technology, VCH Verlangesellschaft, Weinheim, Germany, 1993, Vol. 12, pp 1-31
  6. H. L. Hsieh and R. P. Quirk, in Anionic Polymerization: Principles and Applications, Marcel Dekker, New York, 1996, pp 333-368
  7. G. S. Grest, L. J. Fetters, and J. S. Huang, Adv. Chem. Phys., XCIV, 67 (1996)
  8. P. J. Lutz and D. Rein, in Star and Hyperbranched Polymers, M. K. Mishra and S. Kobayashi, Eds., Marcel Dekker, New York, 1999, pp 27-57
  9. N. Hadjichristidis, J. Polym. Sci.; Part A: Polym. Chem., 37, 857 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P
  10. N. Hadjichristidis, M. Pitsikalis, H. Iatrou, and C. Vlahos, Adv. Polym. Sci., 142, 72 (1999)
  11. N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou, Chem. Rev., 101, 3747 (2001) https://doi.org/10.1021/cr9901337
  12. N. Hadjichristidis, M. Pitsikalis, H. Iatrou, and S. Pispas, Macromol. Rapid Commun., 24, 979 (2003) https://doi.org/10.1002/marc.200300050
  13. A. Hirao, M. Hayashi, Y. Tokuda, N. Haraguchi, T. Higashihara, and S. W. Ryu, Polym. J., 34, 1 (2002) https://doi.org/10.1295/polymj.34.1
  14. A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S. W. Ryu, N. Haraguchi, A. Matsuo, and T. Higashihara, Prog. Polym. Sci., 30, 111 (2005) https://doi.org/10.1016/j.progpolymsci.2004.12.002
  15. S. Pispas, Y. Poulos, and N. Hadjichristidis, Macromolecules, 31, 4177 (1998) https://doi.org/10.1021/ma980361n
  16. S. Sioula, N. Hadjichristidis, and E. L. Thomas, Macromolecules, 31, 5272 (1998) https://doi.org/10.1021/ma971848j
  17. S. Sioula, N. Hadjichristidis, and E. L. Thomas, Macromolecules, 31, 8429 (1998) https://doi.org/10.1021/ma980622t
  18. S. Pispas, N. Hadjichristidis, I. Potemkin, and A. Khokhlov, Macromolecules, 33, 1741 (2000) https://doi.org/10.1021/ma991636h
  19. H. Hückstädt, A. Göpfert, and V. Abetz, Macromol. Chem. Phys., 201, 296 (2000) https://doi.org/10.1002/(SICI)1521-3935(20000201)201:3<296::AID-MACP296>3.0.CO;2-U
  20. K. Yamaguchi, K. Takahashi, H. Hasegawa, H. Iatrou, N. Hadjichristidis, T. Kaneko, Y. Nishikawa, H. Jinnai, T. Matsui, H. Nishioka, M. Shimizu, and H. Furukawa, Macromolecules, 36, 6962 (2003) https://doi.org/10.1021/ma034840k
  21. R. W. Penisi and L. Fetters, Macromolecules, 21, 1094 (1988) https://doi.org/10.1021/ma00182a041
  22. J. W. Mays, Polym. Bull. (Berlin), 23, 247 (1990) https://doi.org/10.1007/BF01032437
  23. I. M. Khan, Z. Gao, K. Khougaz, and A. Eisenberg, Macromolecules, 25, 3002 (1992) https://doi.org/10.1021/ma00037a036
  24. H. Iatrou and N. Hadjichristidis, Macromolecules, 25, 4649 (1992) https://doi.org/10.1021/ma00044a028
  25. H. Iatrou and N. Hadjichristidis, Macromolecules, 26, 2479 (1993) https://doi.org/10.1021/ma00062a013
  26. H. Iatrou, E. Siakali-Kioulafa, N. Hadjichristidis, J. Roovers, and J. W. Mays, J. Polym. Sci., Polym. Phys. Ed., 33, 1925 (1995) https://doi.org/10.1002/polb.1995.090331308
  27. A. Avgeropoulos, N. Hadjichristidis, and J. Roovers, Macromolecules, 29, 6076 (1996) https://doi.org/10.1021/ma960290x
  28. S. Sioula, Y. Tselikas, N. Hadjichristidis, and J. Roovers, Macromolecules, 30, 1518 (1997) https://doi.org/10.1021/ma961447o
  29. A. Avgeropoulos and N. Hadjichristidis, J. Polym. Sci., Polym. Chem. Ed., 35, 813 (1997) https://doi.org/10.1002/(SICI)1099-0518(199703)35:4<813::AID-POLA28>3.0.CO;2-P
  30. G. Velis and N. Hadjichristidis, Macromolecules, 32, 534 (1999) https://doi.org/10.1021/ma9814797
  31. T. Fujimoto, H. Zhang, T. Kazama, Y. Isono, H. Hasegawa, and T. Hashimoto, Polymer, 29, 6076 (1992)
  32. H. Hückstädt, V. Abetz, and R. Stadler, Macromol. Rapid Commun., 17, 599 (1996) https://doi.org/10.1002/marc.1996.030170814
  33. R. P. Quirk, B. Lee, and L. E. Schock, Makromol. Chem. Macromol. Symp., 53, 201 (1992)
  34. R. P. Quirk, T. Yoo, and B. Lee, J. Makromol. Sci., Pure Appl. Chem., A31, 911 (1994)
  35. R. P. Quirk, T. Yoo, Y. Lee, J. Kim, and B. Lee, Adv. Polym. Sci., 153, 67 (2000) https://doi.org/10.1007/3-540-46414-X_3
  36. Y. C. Bae and R. Faust, Macromolecules, 31, 2480 (1998) https://doi.org/10.1021/ma971715y
  37. J. Yun and R. Faust, Macromolecules, 35, 7860 (2002) https://doi.org/10.1021/ma020764u
  38. C. M. Fernyhough, R. N. Young, and R. D. Tack, Macromolecules, 32, 5760 (1999) https://doi.org/10.1021/ma990616c
  39. O. Lambert, P. Dumas, G. Hurtrez, and G. Riess, Macromol. Rapid Commun., 18, 343 (1997) https://doi.org/10.1002/marc.1997.030180411
  40. O. Lambert, S. Reutenauer, G. Hurtrez, G. Riess, and P. Dumas, Polym. Bull. (Berlin), 40, 143 (1998) https://doi.org/10.1007/s002890050235
  41. S. Reutenauer, G. Hurtrez, and P. Dumas, Macromolecules, 34, 755 (2001) https://doi.org/10.1021/ma000676e
  42. N. Meyer, C. Delaite, G. Hurtrez, and P. Dumas, Polymer, 43, 7133 (2002) https://doi.org/10.1016/S0032-3861(02)00454-8
  43. M. Hayashi, K. Kojima, and A. Hirao, Macromolecules, 32, 2425 (1999) https://doi.org/10.1021/ma981673t
  44. M. Hayashi, Y. Negishi, and A. Hirao, Proc. Jpn. Acad. Ser. B, 75, 93 (1999)
  45. A. Hirao and M. Hayashi, Acta Polym., 50, 219 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990701)50:7<219::AID-APOL219>3.0.CO;2-U
  46. A. Hirao, M. Hayashi, and N. Haraguchi, Macromol. Rapid Commun., 21, 1171 (2000) https://doi.org/10.1002/1521-3927(20001101)21:17<1171::AID-MARC1171>3.0.CO;2-C
  47. A. Hirao, A. Matsuo, K. Morifuji, Y. Tokuda, and M. Hayashi, Polym. Adv. Technol., 12, 680 (2001) https://doi.org/10.1002/pat.88
  48. A. Hirao, M. Hayashi, and T. Higashihara, Macromol. Chem. Phys., 202, 3165 (2001) https://doi.org/10.1002/1521-3935(20011101)202:16<3165::AID-MACP3165>3.0.CO;2-5
  49. A. Hirao and T. Higashihara, Macromolecules, 35, 7238 (2002) https://doi.org/10.1021/ma0203400
  50. A. Hirao and N. Haraguchi, Macromolecules, 35, 7224 (2002) https://doi.org/10.1021/ma0202888
  51. A. Hirao, M. Hayashi, and A. Matsuo, Polymer, 43, 7125 (2002) https://doi.org/10.1016/S0032-3861(02)00453-6
  52. A. Hirao and A. Matsuo, Macromolecules, 36, 9742 (2003) https://doi.org/10.1021/ma035264v
  53. A. Hirao, K. Kawasaki, and T. Higashihara, Sci. Technol. Adv. Mater., 5, 469 (2004) https://doi.org/10.1016/j.stam.2004.01.015
  54. A. Hirao, K. Kawasaki, and T. Higashihara, Macromolecules, 37, 5179 (2004)
  55. A. Hirao and T. Higashihara, Macromol. Symp., 215, 57 (2004)
  56. T. Higashihara and A. Hirao, J. Polym. Sci.; Part A: Polym. Chem., 42, 4535 (2004) https://doi.org/10.1002/pola.20362
  57. T. Higashihara, M. Nagura, K. Inoue, N. Hraguchi, and A. Hirao, Macromolecules, 38, 4577 (2005) https://doi.org/10.1021/ma050248e
  58. A. Hirao, M. Hayashi, and T. Higashihara, Macromol. Chem. Phys., 202, 3165 (2001) https://doi.org/10.1002/1521-3935(20011101)202:16<3165::AID-MACP3165>3.0.CO;2-5
  59. A. Hirao and T. Higashihara, Macromolecules, 35, 7238 (2002) https://doi.org/10.1021/ma0203400
  60. Y. Zhao, T. Higashihara, K. Sugiyama, and A. Hirao, J. Am. Chem. Soc., 127, 14158 (2005) https://doi.org/10.1021/ja054821l
  61. R. M. Pike, J. Polym. Sci., 40, 577 (1959) https://doi.org/10.1002/pol.1959.1204013731
  62. A. Hirao, K. Yamaguchi, K. Takenaka, K. Suzuki, and S. Nakahama, Makromol. Chem., Rapid Commun., 3, 941 (1982) https://doi.org/10.1002/marc.1982.030031218
  63. G. G. H. Schulz and H. Höcker, Makromol. Chem., 178, 2589 (1977) https://doi.org/10.1002/macp.1977.021780909
  64. J. F. Douglas, J. Roovers, and K. F. Freed, Macromolecules, 23, 4168 (1990) https://doi.org/10.1021/ma00220a022
  65. N. Corbin and J. Prud'homeme, J. Polym. Sci., Polym. Phys., 15, 1937 (1977) https://doi.org/10.1002/pol.1977.180151106
  66. The first successful synthesis of 4-arm ABCD asymmetric star-branched polymer by the coupling of living anionic polymers with $SiCl_4$ was reported by Hadjichristidis's group in 1993 (ref. 20(b)). In this star, the A, B, C, and D segments were polystyrene, poly(4-methylstyrene), polyisoprene, and poly(1,3-butadiene), respectively. We have recently synthesized two structural similar 4-arm ABCD asymmetric star-branched polymers whose A, B, C, and D segments are polyisoprene, poly(4-methoxystyrene), polystyrene, and poly(4-trimethylsilylstyrene) (ref. 40), and polystyrene, poly($\alpha$-methylstyrene), poly(4-methylstyrene), and poly(methyl methacrylate) (ref. 41). Furthermore, the synthesis of more complex well-defined 7-arm $A_2B_2C_2D$ and 13-arm $A_4B_4C_4D$ asymmetric stars has also been successfully achieved by our research group (refs. 37 and 38). Very recently, we have successfully synthesized a 5-arm ABCDE asymmetric star-branched polymer for the first time. The A,B,C,D, and E segments in this star are polystyrene, poly($\alpha$-methylstyrene), poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), and poly(4-methylphenyl vinyl sulfoixe), respectively (ref. 44)