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COXETER GROUPS AND BRANCHED
COVERINGS OF LENS SPACES

. ALEXANDER MEDNYKH AND ANDREI VESNIN

ABSTRACT. The groups generated by reflections in faces of Coxeter
polyhedra in three-dimensional Thurston’s spaces are considered.
We develop a method for finding of finite index subgroups of Cox-
eter groups which uniformize three-dimensional manifolds obtained
as two-fold branched coverings of manifolds of Heegaard genus one,
that are lens spaces L(p,q) and the space 5% x S'.

1. Introduction

An useful approach to obtain and study a three-dimensional manifold
is to describe it as a branched covering of some other known manifold.

The classical Alexander theorem states that every closed orientable
three-dimensional manifold M? can be obtained as a three-fold branched
covering of the three-dimensional sphere S® [1, 10, 16]. This theorem is
topological and doesn’t say anything about a geometrical structure on
the manifold M3.

Here we are interested in covering properties of three-dimensional
geometrical manifolds. In particular we will give the generalization of
hyperelliptic manifolds admitting geometrical structures. Moreover, we
describe such manifolds uniformized by subgroups of Coxeter groups.

Let X3 be one of three-dimensional geometries E3, H3, S3, H? x E!
or S? x E! [18]. In this paper we consider three-dimensional manifolds
M? which are quotient-spaces M3 = X3/T', where I' is a discrete group
of isometries acting on X® without fixed points.
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A manifold M? is said to be hyperelliptic, if it can be obtained as
a two-fold branched covering of S®. A three-dimensional hyperellip-
tic manifold can be considered as a natural analog of a hyperelliptic
Riemann surface [3]. It was shown in [11] that in each of eight three-
dimensional Thurston’s geometries there exist hyperelliptic manifolds.
Examples of manifolds admitting few hyperelliptic involutions can be
found in [14]

In [12, 13] authors developed the method to glue hyperelliptic ma-
nifolds from a finite number of copies of a Coxeter polyhedron. It is
interesting, that a sufficient condition for the existence of such construc-
tion is the existence of a hamiltonian cycle on the polyhedron.

Otherwise, it is well-known that not every three-dimensional manifold
can be obtained as a two-fold branched covering of $2. For example, it
is not possible for the three-dimensional torus 7% = S! x S! x S,

There are two natural directions for generalizations of the conception
of a hyperelliptic three-manifold.

On the one hand, a two-fold branched covering can be considered
as a particular case of an n-fold cyclic branched covering of S3. Some
results about geometrical properties of such manifolds and the structure
of their fundamental groups can be found in [2, 5-9, 15, 21]. In particu-
lar, in this direction the Fibonacci manifolds and their generalizations
are obtained.

On the other hand, in the theory of Riemann surfaces the important
role is playing by one-hyperelliptic surfaces which are two-fold branched
coverings of the torus, that is the unique Riemann surface of genus
one [3]. Therefore, another natural direction for the generalization of
two-fold branched coverings of S$3, that is a unique manifold of Hee-
gaard genus zero, is to consider two-fold branched coverings of three-
dimensional manifolds of Heegaard genus one, which are exactly lens
spaces L(p, q) and the space §? x S!.

Remark that the method for constructing of three-dimensional ma-
nifolds which are two-fold branched coverings of the projective space
P? = L(2,1) was developed in [12].

In the present paper, generalizing the methods from [12, 13], we will
give a constructive description of two-fold branched coverings of L(p, q)
(see Theorem 1) and S? x S? (see Theorem 2) in term of subgroups of
Coxeter groups acting in three-dimensional spaces.
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2. Basic definitions

A manifold M3 = X3/T is said to be g-hyperelliptic, if there exists
an isometric involution 7 such that the quotient-space N® = M?3/(r)
is homeomorphic to a three-dimensional manifold of Heegaard genus g.
Thus, 0-hyperellipic manifold is a two-fold branched covering of 53 and
is hyperelliptic in classical sense. In particular case g = 1, if N 3 is
homeomorphic to a lens space L(p, q), we will say that M 3isa L(p,q)-
hyperelliptic manifold, and if N® is homeomorphic to $% x S, then M®
is said to be a §% x S'-hyperelliptic manifold.

Here we shall use terminology and basic facts from the theory of
three-dimensional orbifolds {20}, chapter 13.

Let O, and O, be orbifolds with the universal covering space O and
orbifold fundamental groups I'; and I'; respectively. Thus, the following
canonical covering maps hold: m; : O — O =0O/Thyand 72 : O — Oy =
O/T3. Assume that I'; C Ty and denote by 7 : Oy — O, the orbifold
covering induced by this group inclusion. The branching indez of the
covering 7 in a point x € O; is the number |[(I'2)z : (I'1)z|, where
# = n7'(x) and (I';); denotes the stabilizer of the point Z in the group
;. In particular, if the covering 7 is unbranched in the point z € O1,
then we get ‘(Fg)i : (Fl)j‘ =1 and (Fl)} = (FQ)Q:

Let X and Y be metric spaces. For the covering 7 : X — Y we
consider the group Cov,(X,Y) = {h € Homeo(X) : moh = n}. The
covering 7 is said to be a regular G—covering branched over the weighted
graph T C Y if the following three conditions are satisfied:

(i) Cov,(X,Y) = G;

(ii) the map 7 : X \ = Y(T) — Y \ T induced by the map =, is an
unbranched covering;

(iii) the quotient space X/Cov,(X,Y’) is an orbifold with the under-
lying space Y and the singular set T.

Two coverings 7 : X — Y and #’ : X’ — Y are said to be equivalent
if there exists a homeomorphism h : X — X’ such that 7 = 7’ o h.

Let @, and O, be orbifolds with underlying spaces X and Y re-
spectively, and let T be a weighted graph in Y. An orbifold covering
7 O — O, is said to be reqular G-covering branched over T if the
associated covering mx : X — Y of underlying spaces does satisfy the
above conditions (i), (ii), and (iii).

Let P be a Coxeter polyhedron (i.e. a polyhedron with dihedral angles
of the form m/n, where n > 2 is integer) in one of the above three-
dimensional geometries. Its skeleton P! is the weighted graph whose
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vertices and edges coincide with vertices and edges of the polyhedron
P. A weight of the edge e € P! is equal to n if the dihedral angle
corresponding to this edge in P is equal to 7/n.

Recall that a graph H = (V(H),E(H)) is said to be a spanning
subgraph of a graph G = (V(G), E(G)) if sets of vertices of these graphs
coincide: V(H) = V(G), and the set of edges of H is a subset of the set
of edges of G: E(H) C E(G).

We will consider two type of graphs presented in Figure 1. First graph
is the complete graph K(p) with four vertices with two (non-adjacent)
edges labelled by p > 1. We will say that these two edges are essential.
Let all other (inessential) edges be labelled by 2.

&

The graph K(p) The graph O#
Figure 1.

Second graph is the double ©-graph ©# with four vertices and six
edges labelled by 2. Two edges connecting pairs of vertices inside the
circle are said to be essential. As before, all other edges are called
inessential.

Two weighted graphs G and H with integer positive weights are said
to be homeomorphic if these graphs can be obtained from some weighted
graph by the subdivision of its inessential edges.

3. Main results

In this section we will describe the method for constructing of one-
hyperelliptic manifolds in three-dimensional geometries. This approach
is the generalization of the method for constructing of hyperelliptic man-
ifolds given in [12, 13].

Consider the Hopf link 22 presented in Figure 2. The following fact is
well-known and was firstly remarked by Wirtinger in 1904 and published
by Tietze in 1908 (see [19], p. 270).

LEMMA 1. For integers p and q such that (p,q) = 1 and p > 1
consider the spherical orbifold whose underlying space is S® and whose
singular set is the Hopf link 2% labeled by p on both components. Let
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I' = (a,b|aP = b’ = [a,b] = 1) be its fundamental group, and ¢ : I' —
Z, = {c|c? = 1) be the epimorphism, defined by 1)(a) = c and ¢ (b) = c.
Denote G = Ker 1. Then the quotient S/G is the lens space L(p, q).

Figure 2. The Hopf link 22.

The following theorem gives a constructive method for obtaining
L(p, q)-hyperelliptic manifolds admitting a geometrical structure.

THEOREM 1. Let P be a Coxeter polyhedron in X3, where X3 =
E3 H3,S?2 xE',H? x E', and A(P) be the group generated by reflections
in faces of P. Suppose that the l-skeleton P! of P contains a proper
spanning subgraph T homeomorphic to K(p) and all edges of P\ T
have weight two. Then there is a torsion-free subgroup I' < A(P) of
index 8p such that M3 = X3/ is a L(p, q)-hyperelliptic manifold.

Proof. Remark that inessential edges of T" form a hamiltonian cycle C
in P!. Denote by A™(P) subgroup of A(P) consisting of all orientation-
preserving isometries. The underlying space |O| of the orbifold O =
X3/A*(P) is homeomorphic to S? and its singular set is the skeleton
P!. Denote by H the two-fold covering of O branched over C. Using
that C' is isotopic to an unknotted circle in |O] = S%, we get that the
underlying space |H| of the orbifold H is homeomorphic to S®. The
singular set ¥ = X (H) of H consists of two parts £ = X; U Xy each of
which is non-empty. The first part ¥; consists of two-component Hopf
link 22 formed by preimages ¥~ !(e;) and ¥~ !(e2) of essential edges e;
and ey of T under the projection ¢ : H — O.

The second part X, consists of a finite number of unknotted circles
with weight two which are preimages of edges of P!\ T. We will call
the parts ¥; and X, essential and inessential, respectively.

We will construct the regular Z, & Zy-covering M of the orbifold H
and demonstrate that M3 is a L(p, q)-hyperelliptic manifold.

Consider the fundamental group I's = 71(S3 \ ¥) of the complement
of ¥, and suppose that 'y is generated by meridian loops around edges
of ¥. Then relations can be obtained by the Wirtinger algorithm. Loops
around essential (resp. inessential) components of ¥ call essential (resp.
inessential} loops.
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Consider an epimorphism
¢: Ty =Zpy®Zo={a:a’" =1 b:b*=1)

defined by ¢(z) = a if x is an essential loop around the first component
¥~ !(e1) of the Hopf link; p(z) = a9, (p,q) = 1, if 2 is an essential loop
around the second component ¢~ !(ez) of the Hopf link; and ¢(x) = b is
z is an inessential loop.

As Z, @ Z, is abelian, above described epimorphism ¢ is correctly
defined and can be canonically extended to the epimorphism

P : Ty —Zy® Ly,

where I'yy is the fundamental groups of the orbifold H such that H =
X?/T'. Such extension is possible in virtue of [4]: the presentation of
I'yy can be obtained from the presentation of I'y, by adding the relation
2P = 1 if z is an essential loop and the relation 22> = 1 if z in an
inessential loop.

Put I' = Ker & and consider the quotient space M3 = X3/I". Remark
that the group inclusion I'aI'y, with I'y /T = Z,&Z, induces the regular
Ly, ® Zo-covering

T M =X3T - H=X3/Ty

which is branched over all components of the singular set of H.

Consider canonical coverings ¢ : X* - M3 = X3/T and w : X% —
H = X3/T'y. Let us fix an arbitrary point z € M3 and its preimage
zZ € 071(2). Denote 2’ = w(Z).

In a small enough ball V; = B(Z,¢€) the covering 7 : M3 — H can be
presented in the form 7 : V;/I's — V;/(I'y);, where T'; and (T'y); are
stabilizers of the point Z in groups I' and 'y, respectively. In particular,
the branching index of the covering 7 in the point z is equal to |(I'y); :
L.

For the point 2’ € H one of the following cases holds: (i) 2’ ¢ &; (ii)
z' € y; or (iii) 2/ € ¥g. Let us study the stabilizers (I'y); and I'; in
each of the above cases. In the case (i) we have (I'y); = (1), whence
['; = (1). In the case (ii) 2’ belongs to an essential edge and (I'y); & Z,.
By the definition of ¢ we have |(T'w); : I';| = p, then I'; = (1). In the
case (ili) 2’ belongs to an inessential edge and (I'y); & Z;. By the
definition of @, |(I'y)s : T'z| = 2, then I'; = (1).



Coxeter groups and branched coverings of lens space 1173

Therefore, " acts on X2 without fixed points (equivalently, it is torsion-
free) and M3 is a manifold.
Consider an epimorphism

X:Zy®Zy={a:a?=1)&(b:b°=1) > Zy,=(a:af =1)
defined by x(a) = @, x(b) = 1. Then
Xo‘ﬁ:FH—’ZP

send loops around the first component of the Hopf link to o, and loops
around the second component of the Hopf link to a?. By Lemma 1,
the underlying space of the orbifold X®/Ker (o @) is homeomorphic to
L(p,q).

The group inclusion Ker (x o #) > Ker @ = I' induces the two-fold
covering of orbifolds:

M? =X3/T — X3/Ker (xo0 ).

Considering underlying spaces of above orbifolds, we conclude that
M3 is the two-fold branched covering of the lens space L(p,q). The
proof is complete. O

EXAMPLE. A hyperbolic L(3,1)-hyperelliptic manifold can be ob-
tained from 24 copies of the polyhedron P presented in Figure 3. This
polyhedron has 12 vertices, 18 edges, and 8 faces (four 5-gons and four 4-
gons). Two of its dihedral angles are equal to 7/3 and all other dihedral
angles are equal to 7/2.

Figure 3. The example.
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By Andreev theorem [20], this polyhedron can be realized in the hy-
perbolic space H3. Remark, that l-skeleton of P contains a proper
spanning subgraph 7', shown by marks “o” in Figure 3, that is home-
omorphic to K(3). Therefore, by Theorem 1, the group generated by
reflections in faces of P has the subgroup of index 24 uniformizing a

L(3, 1)-hyperelliptic manifold.

Now we will consider S? x S!-hyperelliptic manifolds. The following
fact is well-known and can be found in [17], p. 300.

LEMMA 2. The two-fold branched covering of S® branched over the
two-component trivial link O? is homeomorphic to the space S? x S'.

The following theorem gives a constructive method for obtaining of
52 x Sl-hyperelliptic manifolds admitting geometrical structures.

THEOREM 2. Let P be a Coxeter polyhedron in X3, where X® =
E3,H3,S? x E',H? x E!, and A(P) be the group generated by reflections
in faces of P. Suppose that the 1-skeleton P' of P contains a proper
spanning subgraph T homeomorphic to the double theta graph ©# and
all edges of P1\T have weight two. Then there is a torsion-free subgroup
I' < A(P) of index 16 such that M® = X3/T is a §% x S'-hyperelliptic
manifold.

Proof. The proof is similar to the proof of Theorem 1. Denote by
AT (P) subgroup of A(P) consisting of all orientation-preserving isome-
tries. The underlying space |O] of the orbifold O = X3/A*(P) is home-
omorphic to $3 and its singular set is the skeleton P!. Remark that
inessential edges of T form a hamiltonian cycle C in P!. Denote by H
the two-fold covering of O branched over C. Since C is isotopic to an
unknotted circle in [O] = $3, the underlying space |H| of the orbifold H
is homeomorphic to $3. The singular set ¥ = ¥ (H) of H consists of two
parts ¥ = ¥; U Xo. The first part ¥; is the of two-component trivial
link 02 formed by preimages ¢ ~!(e;) and ¥ ~!(es) of essential edges e;
and ey of T under the projection v : H — O. The second part ¥q
consists of a finite number of unknotted circles with weight two which
are preimages of edges of P!\ T. We will call parts ¥; and X, essential
and inessential, respectively.

We will construct the regular Z, @ Zy—covering M? of the orbifold H
and demonstrate that M3 is a S? x S'-hyperelliptic manifold.

Consider the fundamental group 'y = m;(S® \ X) of the complement
of X, and suppose that I's: is generated by meridian loops around edges
of ¥. Then relations can be obtained by the Wirtinger algorithm. Loops
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around essential (resp. inessential) components of ¥ call essential (resp.
inessential) loops.
Consider an epimorphism

0Ty = Zy®Zy={a:a*>=1)@b:b*=1)

defined by p(z) = a if x is an essential loop, and ¢(z) = b if z is an
inessential loop.

As 7o & Zo is abelian, above described epimorphism ¢ is correctly
defined and can be canonically extended to the epimorphism

Q:FH_’Z2@Z27

where I'y is the fundamental groups of the orbifold H such that H =
X3/T'y. By [4] the presentation of I'y; can be obtained from the presen-
tation of I's. by adding the relation z? = 1 for generating loops around
edges.

Put I = Ker @ and consider the quotient space M3 = X3/I". Remark
that the group inclusion I'<I'y with 'y, /T = Zy ®Z5 induces the regular
Zo @ Zo-covering

T M =X3T - H=X3Tx

which is branched over all components of the singular set of H.

Consider canonical coverings o : X3 — M3 = X3/T and w : X3 —
H = X3/Ty. Let us fix an arbitrary point z € M3 and its preimage
zZ € 07 !(z). Denote 2’ = w(Z).

In a small enough ball Vi = B(Z,€) the covering m : M® — H can
be presented in the form 7 : V;/T's — V:/(I'y)z, where I'; and (I'y)s
are stabilizers of the point Z in groups I' and T'y, respectively. In par-
ticular, the branching index of the covering 7 in the point z is equal to
|(Tr)z ¢ Tzl

For the point 2’ € H one of the following cases holds: (i) 2’ ¢ ; or (ii)
2" € . In the case (i) we have (I'y); = (1), whence I'; & (1). In the case
(ii) we have (I'y): = Zo. By the definition of @, [(I'y); : ;| = 2, then

: = (1). Therefore, T acts on X® without fixed points (equivalently, it
is torsion-free) and M* is a manifold.

Consider an epimorphism

X1Z2®Zy=(a:a>=1)@b:b¥=1)—>Zy={(a:a?=1)



1176

Alexander Mednykh and Andrei Vesnin

defined by x(a) = a, x(b) = 1. Then

By

xop: Ty — Zs.

Lemma 2, the underlying space of the orbifold X3/Ker (x o $) is

homeomorphic to §2 x S,
The group inclusion Ker (x o ¢) > Ker @ = I' induces the two-fold
covering of orbifolds:

M3 =X3/T — X3/Ker (xo 3).

Considering underlying spaces of above orbifolds, we conclude that

M?3 is the two-fold branched covering of the manifold 5% x S'. The proof
is complete. O
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