• Title/Summary/Keyword: bounded linear operator

Search Result 110, Processing Time 0.021 seconds

Spectral p-dilations and polynomially bounded operators

  • Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.889-895
    • /
    • 1995
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$.

  • PDF

ON A DECOMPOSITION OF MINIMAL COISOMETRIC EXTENSIONS

  • Park, Kun-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.847-852
    • /
    • 1994
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operator on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the ultraweak operator topology on $L(H)$.

  • PDF

ON UNBOUNDED SUBNOMAL OPERATORS

  • Jin, Kyung-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 1993
  • In this paper we will extend some notions of bounded linear operators to some unbounded linear operators. Let H be a complex separable Hilbert space and let B(H) denote the algebra of bounded linear operators. A closed densely defind linear operator S in H, with domain domS, is called subnormal if there is a Hilbert space K containing H and a normal operator N in K(i.e., $N^{*}$N=N $N^*/)such that domS .subeq. domN and Sf=Nf for f .mem. domS. we will show that the Radjavi and Rosenthal theorem holds for some unbounded subnormal operators; if $S_{1}$ and $S_{2}$ are unbounded subnormal operators on H with dom $S_{1}$= dom $S^{*}$$_{1}$ and dom $S_{2}$=dom $S^{*}$$_{2}$ and A .mem. B(H) is injective, has dense range and $S_{1}$A .coneq. A $S^{*}$$_{2}$, then $S_{1}$ and $S_{2}$ are normal and $S_{1}$.iden. $S^{*}$$_{2}$.2}$.X>.

  • PDF

A NOTE ON DISCRETE SEMIGROUPS OF BOUNDED LINEAR OPERATORS ON NON-ARCHIMEDEAN BANACH SPACES

  • Blali, Aziz;Amrani, Abdelkhalek El;Ettayb, Jawad
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.409-414
    • /
    • 2022
  • Let A ∈ B(X) be a spectral operator on a non-archimedean Banach space over an algebraically closed field. In this note, we give a necessary and sufficient condition on the resolvent of A so that the discrete semigroup consisting of powers of A is uniformly-bounded.

TOEPLITZ AND HANKEL OPERATORS WITH CARLESON MEASURE SYMBOLS

  • Park, Jaehui
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.91-103
    • /
    • 2022
  • In this paper, we introduce Toeplitz operators and Hankel operators with complex Borel measures on the closed unit disk. When a positive measure 𝜇 on (-1, 1) is a Carleson measure, it is known that the corresponding Hankel matrix is bounded and vice versa. We show that for a positive measure 𝜇 on 𝔻, 𝜇 is a Carleson measure if and only if the Toeplitz operator with symbol 𝜇 is a densely defined bounded linear operator. We also study Hankel operators of Hilbert-Schmidt class.

ON A CLASS OF WEAKLY CONTINUOUS OPERATORS

  • Rho, Jae-Chul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.87-93
    • /
    • 1983
  • Let X and Y be normed linear spaces. An operator T defined on X with the range in Y is continuous in the sense that if a sequence {x$_{n}$} in X converges to x for the weak topology .sigma.(X.X') then {Tx$_{n}$} converges to Tx for the norm topology in Y. We shall denote the class of such operators by WC(X, Y). For example, if T is a compact operator then T.mem.WC(X, Y). In this note we discuss relationships between WC(X, Y) and the class of weakly of bounded linear operators B(X, Y). In the last section, we will consider some characters for an operator in WC(X, Y).).

  • PDF

DILATIONS FOR POLYNOMIALLY BOUNDED OPERATORS

  • EXNER, GEORGE R.;JO, YOUNG SOO;JUNG, IL BONG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.893-912
    • /
    • 2005
  • We discuss a certain geometric property $X_{{\theta},{\gamma}}$ of dual algebras generated by a polynomially bounded operator and property ($\mathbb{A}_{N_0,N_0}$; these are central to the study of $N_{0}\timesN_{0}$-systems of simultaneous equations of weak$^{*}$-continuous linear functionals on a dual algebra. In particular, we prove that if T $\in$ $\mathbb{A}$$^{M}$ satisfies a certain sequential property, then T $\in$ $\mathbb{A}^{M}_{N_0}(H) if and only if the algebra $A_{T}$ has property $X_{0, 1/M}$, which is an improvement of Li-Pearcy theorem in [8].

LINEAR MAPS PRESERVING 𝓐𝓝-OPERATORS

  • Golla, Ramesh;Osaka, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.831-838
    • /
    • 2020
  • Let H be a complex Hilbert space and T : H → H be a bounded linear operator. Then T is said to be norm attaining if there exists a unit vector x0 ∈ H such that ║Tx0║ = ║T║. If for any closed subspace M of H, the restriction T|M : M → H of T to M is norm attaining, then T is called an absolutely norm attaining operator or 𝓐𝓝-operator. In this note, we discuss linear maps on B(H), which preserve the class of absolutely norm attaining operators on H.