• Title/Summary/Keyword: bounded domain

Search Result 190, Processing Time 0.024 seconds

UNSTEADY FLOW OF BINGHAM FLUID IN A TWO DIMENSIONAL ELASTIC DOMAIN

  • Mosbah Kaddour;Farid Messelmi;Saf Salim
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.513-534
    • /
    • 2024
  • The main goal of this work is to study an initial boundary value problem relating to the unsteady flow of a rigid, viscoplastic, and incompressible Bingham fluid in an elastic bounded domain of ℝ2. By using the approximation sequences of the Faedo-Galerkin method together with the regularization techniques, we obtain the results of the existence and uniqueness of local solutions.

MATRICES OF TOEPLITZ OPERATORS ON HARDY SPACES OVER BOUNDED DOMAINS

  • Chung, Young-Bok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1421-1441
    • /
    • 2017
  • We compute explicitly the matrix represented by the Toeplitz operator on the Hardy space over a smoothly finitely connected bounded domain in the plane with respect to special orthonormal bases consisting of the classical kernel functions for the space of square integrable functions and for the Hardy space. The Fourier coefficients of the symbol of the Toeplitz operator are obtained from zeroth row vectors and zeroth column vectors of the matrix. And we also find some condition for the product of two Toeplitz operators to be a Toeplitz operator in terms of matrices.

LOWER HOUNDS ON THE HOLOMORPHIC SECTIONAL CURVATURE OF THE BERGMAN METRIC ON LOCALLY CONVEX DOMAINS IN $C^{n}$

  • Cho, Sang-Hyun;Lim, Jong-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.127-134
    • /
    • 2000
  • Let $\Omega$ be a bounded pseudoconvex domain in$C^{n}$ with smooth defining function r and let$z_0\; {\in}\; b{\Omega}$ be a point of finite type. We also assume that $\Omega$ is convex in a neighborhood of $z_0$. Then we prove that all the holomorphic sectional curvatures of the Bergman metric of $\Omega$ are bounded below by a negative constant near $z_0$.

  • PDF

Pseudohermitian Curvatures on Bounded Strictly Pseudoconvex Domains in ℂ2

  • Seo, Aeryeong
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.323-331
    • /
    • 2022
  • In this paper, we present a formula for pseudohermitian curvatures on bounded strictly pseudoconvex domains in ℂ2 with respect to the coefficients of adapted frames given by Graham and Lee in [3] and their structure equations. As an application, we will show that the pseudohermitian curvatures on strictly plurisubharmonic exhaustions of Thullen domains diverges when the points converge to a weakly pseudoconvex boundary point of the domain.

NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • Suppose that $\mu$ is a finite positive Borel measure on bounded symmetric domain $\Omega{\subset}\mathbb{C}^n\;and\;\nu$ is the Euclidean volume measure such that $\nu(\Omega)=1$. Suppose 1 < p < $\infty$ and r > 0. In this paper, we will show that the norms $sup\{\int_\Omega{\mid}k_z(w)\mid^2d\mu(w)\;:\;z\in\Omega\}$, $sup\{\int_\Omega{\mid}h(w)\mid^pd\mu(w)/\int_\Omega{\mid}h(w)^pd\nu(w)\;:\;h{\in}L_a^p(\Omega,d\nu),\;h\neq0\}$ and $$sup\{\frac{\mu(E(z,r))}{\nu(E(z,r))}\;:\;z\in\Omega\}$$ are are all equivalent. We will also show that the inclusion mapping $ip\;:\;L_a^p(\Omega,d\nu){\rightarrow}L^p(\Omega,d\mu)$ is compact if and only if lim $w\rightarrow\partial\Omega\frac{\mu(E(w,r))}{\nu(E(w,r))}=0$.

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.

SYMMETRY AND MONOTONICITY OF SOLUTIONS TO FRACTIONAL ELLIPTIC AND PARABOLIC EQUATIONS

  • Zeng, Fanqi
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1001-1017
    • /
    • 2021
  • In this paper, we first apply parabolic inequalities and a maximum principle to give a new proof for symmetry and monotonicity of solutions to fractional elliptic equations with gradient term by the method of moving planes. Under the condition of suitable initial value, by maximum principles for the fractional parabolic equations, we obtain symmetry and monotonicity of positive solutions for each finite time to nonlinear fractional parabolic equations in a bounded domain and the whole space. More generally, if bounded domain is a ball, then we show that the solution is radially symmetric and monotone decreasing about the origin for each finite time. We firmly believe that parabolic inequalities and a maximum principle introduced here can be conveniently applied to study a variety of nonlocal elliptic and parabolic problems with more general operators and more general nonlinearities.

APPLICATION OF LINKING FOR AN ELLIPTIC SYSTEM

  • Nam, Hyewon
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.181-188
    • /
    • 2009
  • In this article we consider nontrivial solutions of an elliptic system in the bounded smooth domain with homogeneous Dirichlet data. We apply the linking theorem for showing the existence results that is obtained by Massa.

  • PDF

A Modified Domain Deformation Theory for Signal Classification (함수의 정의역 변형에 의한 신호간의 거리 측정 방법)

  • Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.342-349
    • /
    • 1999
  • The metric defined on the domain deformation space better measures the similarity between bounded and continuous signals for the purpose of classification via the metric distances between signals. In this paper, a modified domain deformation theory is introduced for one-dimensional signal classification. A new metric defined on a modified domain deformation for measuring the distance between signals is employed. By introducing a newly defined metric space via the newly defined Integra-Normalizer, the assumption that domain deformation is applicable only to continuous signals is removed such that any kind of integrable signal can be classified. The metric on the modified domain deformation has an advantage over the $L^2$ metric as well as the previously introduced domain deformation does.

  • PDF