
Korean J. Math. 17 (2009), No. 2, pp. 181–188

APPLICATION OF LINKING FOR AN ELLIPTIC

SYSTEM

Hyewon Nam

Abstract. In this article we consider nontrivial solutions of an
elliptic system in the bounded smooth domain with homogeneous
Dirichlet data. We apply the linking theorem for showing the exis-
tence results that is obtained by Massa.

1. Introduction

In this paper, we are interested in the existence of nontrivial solutions
of the elliptic system with homogeneous Dirichlet data

(1)




−∆u = au + bv + C1(v

+)p + f1 + tφ1 in Ω
−∆v = bu + av + C2(u

+)q + f2 + rφ1 in Ω
u = v = 0 on ∂Ω,

where u+(x) = max{0, u(x)} and C1, C2 are two positive constants.
Here Ω is a smooth bounded domain in RN with N ≥ 2 and φ1 is the
first eigenfunction of the Laplacian with Dirichlet boundary conditions.
And the nonlinearities will be assumed both superlinear and subcritical,
that is, 1 < p, q < 2∗ − 1, where 2∗ = 2N

N−2
if N ≥ 3 and 2∗ = ∞ if

N = 2.

Recently Massa [3] considered the existence of two solutions of prob-
lem (1) in a smooth bounded domain Ω ⊆ RN(N ≥ 2). He proved the
following two theorems.
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Theorem 1.1. (Massa [3]) The problem (1) is rewritten as a vectorial
form



−∆

[
u
v

]
= A

[
u
v

]
+

[
(v+)p

(u+)q

]
+

[
f1

f2

]
+

[
t
r

]
φ1 in Ω

u = v = 0 in ∂Ω

where A =

[
a b
b a

]
.

If A has real eigenvalues a ± b 6∈ σ(−∆) and f1,2 ∈ Ln(Ω) with
n > N ≥ 2, then there exits (t0, r0) ∈ R2 such that if (t, r)T = (t0, r0)

T +
(λ1I−A)(τ, ρ)T with τ, ρ < 0 then a negative solution (uneg, vneg) of (1)
exists.

Theorem 1.2. (Massa [3]) Under the same hypotheses as in Theorem
1.1, then for the same vectors (t, r) ∈ R2, a second solution exists.

Massa is motivated by the results in [1] and [4]. The proof of Theorem
1.1 is relatively simple, since for negative solutions system (1) turns out
to be a linear problem. Theorem 1.2 is proved by finding a critical point
of a functional defined by

F (u) =
1

2
B(u,u)−H(u)

=

∫

Ω

∇u∇v − 1

2

∫

Ω

(
b(u2 + v2) + 2auv

)

−C1

∫

Ω

[(v + vneg)
+]p+1

p + 1
− C2

∫

Ω

[(u + uneg)
+]q+1

q + 1
,

where

B((u, v), (w, z)) =

∫

Ω

∇u∇z +∇v∇w − a(uz + vw)− b(uw + vz).

We know that the functional F is C1(E;R) and its critical points (u, v)
are such that (u + uneg, v + vneg) are solutions of (1).

We apply the linking theorem to find the solutions of the system (1).
We have the following theorem.

Theorem 1.3. If A has real eigenvalues a ± b 6∈ σ(−∆) and f1,2 ∈
Ln(Ω) with n > N ≥ 2, then the system (1) has at least two nontrivial
solutions.
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2. The variational structure

We consider the space E = H1
0×H1

0 equipped with the scalar product

〈(u, v), (w, z)〉E =

∫

Ω

∇u∇w +∇v∇z,

the related norm ‖(u, v)‖E. In order to find a orthogonal base for E
which diagonalizes B, we consider the eigenvalue problem

(u, v) ∈ E : B((u, v), (φ, ψ)) = µ〈(u, v), (φ, ψ)〉E ∀(φ, ψ) ∈ E :

this gives the eigenvalues

µ±i =
−b± (λi − a)

λi

(i ∈ N);

and the related eigenvectors

Ψ±i =
(φi,±φi)√

2λi

(i ∈ N).

In view of this structure we may define

E+ = span{Ψi : µi > 0, i ∈ Z0},
E− = span{Ψi : µi < 0, i ∈ Z0},
E0 = span{Ψi : µi = 0, i ∈ Z0},

and we have

Lemma 2.1. There exists ξ∗ > 0 such that

B(u,u) ≥ 2ξ∗‖u‖2
E for u ∈ E+(2)

B(u,u) ≤ −2ξ∗‖u‖2
E for u ∈ E−.(3)

Moreover, if a± b /∈ σ(−∆), then E0 = {0}.
We also define ñ such that for i ≥ ñ we have λi − a > |b| and

Eh = span{Ψi : |i| ≥ ñ, i ∈ Z0}, El = span{Ψi : |i| < ñ, i ∈ Z0}.
And we have the following

Lemma 2.2. (u, v) ∈ E+ ∩ Eh implies u = v and (u, v) ∈ E− ∩ Eh

implies u = −v.

For the application of the linking inequality, we define

H0 = El ∩ E+, H1 = Eh ∩ E+, H2 = El ∩ E−, H3 = Eh ∩ E−,

then E = H0 ⊕H1 ⊕H2 ⊕H3 and we have
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Lemma 2.3. There exists g = (g, g) ∈ H1 with ‖g‖E = 1 and
‖g‖L∞ = ∞.

Lemma 2.1 ∼ 2.3 are proved in [3].

3. Proof of Theorem 1.3

In this section we will prove the PS condition and the estimates, which
were required for the application of the linking Theorem.

Lemma 3.1. (PS Condition). The functional F satisfies the PS con-
dition, that is, let εn be a sequence of positive reals converging to zero
and {un}n∈N ⊂ E be such that

|F (un)| ≤ T(4)

|F ′(un)[φ, ψ]| ≤ εn‖(φ, ψ)‖E∀(φ, ψ) ∈ E :(5)

then {un} admits a convergent subsequence.

Proof. First, we want to prove that ‖un‖E is bounded. For the sake of
contradiction, we consider a sequence {un} such that ‖un‖E →∞. And
we define (Un, Vn) = (un, vn)/‖un‖E, so that (Un, Vn) → (U, V ) weakly
in E and strongly in [Lr]2 for r < 2∗.

We observe that∫

Ω

[(vn + vneg)
+]pvn =

∫

Ω

[(vn + vneg)
+]p+1 + [(vn + vneg)

+]p(−vneq)

Then, by considering F (un)− 1
2
F ′(un)[un], we get

C1

(
1

2
− 1

p + 1

) ∫

Ω

[(vn + vneg)
+]p+1

+C2

(
1

2
− 1

q + 1

) ∫

Ω

[(un + uneg)
+]q+1 +

C1

2

∫

Ω

[(vn + vneg)
+]p(−vneq)

+
C2

2

∫

Ω

[(un + uneg)
+]q(−uneq) ≤ T + εn‖un‖E;

by observing that each term in the expression above is nonnegative, we
conclude that the estimate from above holds for each of them, and then

(6)
1

‖un‖E

∫

Ω

[(vn + vneg)
+]p+1 → 0,

1

‖un‖E

∫

Ω

[(un + uneg)
+]q+1 → 0.
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For any (φ, ψ) ∈ E with ‖(φ, ψ)‖E = 1, we consider F ′(un)[φ,ψ]
‖un‖E

. We
get

B((Un, Vn), (φ, ψ)) − C1

∫

Ω

[(vn + vneg)
+]p

‖un‖E

ψ(7)

− C2

∫

Ω

[(un + uneg)
+]q

‖un‖E

φ → 0.

By using the weak convergence of (Un, Vn) and (6), (7) implies that

B((Un, Vn), (φ, ψ)) → 0.

Now consider F ′(un)[vn,un]
‖un‖E

;

B((Un, Vn), (Vn, Un)) − C1

∫

Ω

[(vn + vneg)
+]p

‖un‖E

Un

− C2

∫

Ω

[(un + uneg)
+]q

‖un‖E

Vn → 0,

which implies B((Un, Vn), (Vn, Un)) → 0 and then
∫
Ω
|∆Un|2 + |∆Vn|2 →

0. But this gives rise to a contradiction since by definition we have
‖(Un, Vn)‖E = 1. We conclude that ‖un‖E is bounded. It is now simple
to see that un admits a convergent subsequence. In fact, up to a subse-
quence, (un, vn) → (u, v) weakly in E and strongly in [Lr]2 for r < 2∗,
then we may consider F ′(un, vn)[vn − v, un − u] to obtain

∫

Ω

∆un∆(un − u) + ∆vn∆(vn − v) → 0,

which implies that the convergence is in fact strong.

For any Y subspace of E, consider Bρ(Y ) := {u ∈ Y : ‖u‖ ≤ ρ} and
denote by ∂Bρ(Y ) the boundary of Bρ(Y ) relative to Y . Furthermore
define, for any e ∈ E,

QR (Y, e) = {u + ae ∈ Y ⊕ [e] : u ∈ Y, a ≥ 0, ‖u + ae‖ ≤ R}
and denote by ∂QR (Y, e) its boundary relative to Y ⊕ [e].

Lemma 3.2. There exists ρ > 0 such that

inf
Bρ(H0⊕H1)

F ≥ 0 and inf
∂Bρ(H0⊕H1)

F > 0
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Proof. Applying the proof of Lemma 3.6 in [3], if ‖u‖E ≤ ρ then we
have

F (u) ≥ ‖u‖2
H1

0

(
ξ∗ − C‖u‖q−1

H1
0

)
+ ‖v‖2

H1
0

(
ξ∗ − C‖v‖p−1

H1
0

)

≥ ‖u‖2
H1

0

(
ξ∗ − Cρq−1

)
+ ‖v‖2

H1
0

(
ξ∗ − Cρp−1

)
.

Since p, q > 1, for ρ > 0 small enough we obtain that ξ∗ − Cρq−1 > 0

and ξ∗ − Cρp−1 > 0. Let C̃ = min{ξ∗ − Cρq−1, ξ∗ − Cρp−1}, then

F (u) ≥ C̃
(
‖u‖2

H1
0

+ ‖v‖2
H1

0

)
= C̃‖u‖2

E.

Hence if ‖u‖E ≤ ρ then F (u) ≥ C̃‖u‖2
E ≥ 0 and if ‖u‖E = ρ F (u) ≥

C̃‖u‖2
E = C̃ρ2 > 0

Lemma 3.3. Let g as in the Lemma 2.3. We have

sup
QR(H2⊕H3,g)

F < +∞, for any R > 0.

Proof. Since w ∈ E−, B(w,w) ≤ −2ξ∗‖w‖2
E. And since E+ and

E− are orthogonal, 〈w,g〉E = 0 = B(w,g) and B(u,u) = B(w,w) +
s2B(g,g). Hence

F (u) =
1

2
B(u,u)− C1

∫

Ω

[(v + vneq)
+]p+1

p + 1
− C2

∫

Ω

[(u + uneq)
+]q+1

q + 1

≤ −ξ∗‖w‖2
E +

1

2
s2B(g,g)

≤ 1

2
s2B(g,g)

We know that

‖w + sg‖2
E = ‖w‖2

E + s2‖g‖2
E = ‖w‖2

E + s2.

For any R > 0, if ‖w + sg‖E ≤ R then s ≤ R and hence

F (u) ≤ 1

2
s2B(g,g) ≤ 1

2
R2B(g,g) < +∞.

Lemma 3.4. Let ρ as in the lemma 3.2. Then there exists R > ρ such
that F (u) ≤ 0 for:

(a) u ∈ E−,
(b) u = w + sg; w ∈ E−, ‖w + sg‖E = R, 0 < s ≤ R.
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Proof. (a) It is proved in Lemma 3.8 of [3].
(b) Applying the proof of Lemma 3.8 (c) in [3], we have

−C1

∫

Ω

[(v + vneq)
+]p+1

p + 1
− C2

∫

Ω

[(u + uneq)
+]q+1

q + 1
≤ −C̃Rmin{p,q}+1.

We get

F (u) ≤ 1

2
B(u,u)− C̃Rmin{p,q}+1

≤ −ξ∗‖w‖2
E +

1

2
s2B(g,g)− C̃Rmin{p,q}+1

≤ 1

2
s2B(g,g)− C̃Rmin{p,q}+1

= R2

{
1

2

( s

R

)2

B(g,g)− C̃Rmin{p,q}−1

}

≤ R2

{
1

2
B(g,g)− C̃Rmin{p,q}−1

}
.

Choose R > 1(and also R > ρ) large enough to make 1
2
B(g,g) −

C̃Rmin{p,q}−1 < 0: which completes the proof.

Proof of Theorem 1.3. By Lemma 3.2∼ 3.4, there exists 0 < ρ < R
such that

inf
Bρ(H0⊕H1)

F < inf
∂Bρ(H0⊕H1)

F.

Moreover the functional F satisfies the PS condition. By the linking
theorem, F has at least two critical values c1 and c2

inf
Bρ(H0⊕H1)

F ≤ c1 ≤ sup
∂QR(H2⊕H3,g)

F < inf
∂Bρ(H0⊕H1)

F ≤ c2 ≤ sup
QR(H2⊕H3,g)

F.

Since infBρ(H0⊕H1) F ≥ 0 and infBρ(H0⊕H1) F , c1 = 0. We know that (1)
has a negative solution. Since c2 > 0, (1) has at least one nontrivial
solution and the proof is completed.
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