• 제목/요약/키워드: bounded control input

검색결과 133건 처리시간 0.025초

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 안정화 제어 응용 (Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Application to Stabilization Control)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.88-95
    • /
    • 2006
  • In this paper, the gain-scheduled control design proposed in the previous paper has been applied to a target tracking system. In such system, it is needed to attenuate disturbance effectively as long as control input satisfies the given constraint on its magnitude. The scheduled gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain and the scheduled gain control with constant Q matrix cases.

제어 입력에 시간 지연을 갖는 선형 시스템의 $H_{\infty}$ 설계 (An $H_{\infty}$ Controller Design for linear Systems with Input Time Delay)

  • 김홍락;유석환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.42-45
    • /
    • 1996
  • This paper presents a solution of the $H_{\infty}$ control problem for linear systems with input time delay. $H_{\infty}$ norm bounded condition is obtained as a sufficient condition for linear systems with input time delay. Based upon this sufficient condition, an $H_{\infty}$ controller design method which involves the solutions of linear matrix inequalities via convex optimization is developed.

  • PDF

Driving of the Ball Screw Actuator Using a Global Sliding Mode Control with Bounded Inputs

  • Choi Hyeung-Sik;Son Joung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.758-768
    • /
    • 2005
  • The ball screw actuated by the electric motor is widely used as an essential actuator for driving the mechanical system by virtue of accuracy and force transmission capability. In this paper, a design of the global sliding mode control is presented to drive the ball screw actuator along the minimum time trajectory, In the proposed control scheme, if the ranges of parametric uncertainties and torque limits of the system are specified, the arrival time of the load along the minimum time trajectory can be estimated. Also, the arriving time at the reference input and the maximum acceleration are expressed in a closed form solution. Conversely, the capacity of a ball screw actuator including the motor can be easily designed if the external load and its transportation time are specified. The superior performance of the proposed control scheme and analysis is validated by the computer simulation and experiments comparing with other sliding mode controllers.

MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계 (A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model)

  • 조영완
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.

무고정 조립작업을 위한 협조로봇 매니퓰레이터의 제어에 관한 연구 (A study on the control of two-cooperating robot manipulators for fixtureless assembly)

  • 최형식
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1209-1217
    • /
    • 1997
  • This paper proposes the modeling of the dynamics of two cooperating robot manipulators performing the assembly job such as peg-in-hole while coordinating the payload along the desired path. The mass and moment of inertia of the manipulators and the payload are assumed to be unknown. To control the uncertain system, a robust control algorithm based on the computed torque control is proposed. Usually, the robust controller requires high input torques such that it may face input saturation in actual application. In this reason, the robust control algorithm includes fuzzy logic such that the magnitude of the input torque of the manipulators is controlled not to go over the hardware saturation while keeping path tracking errors bounded. A numerical example using dual three degree-of-freedom manipulators is shown.

Taylor series를 이용한 시변 지연 입력을 갖는 비선형 시스템의 이산화 (Time Discretization of Nonlinear System with Variable Time-delay Input Using Taylor Series Expansion)

  • 최형조;박지향;이수영;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2005
  • A new discretization algorithm for nonlinear systems with delayed input is proposed. The algorithm is represented by Taylor series expansion and ZOH assumption. This method is applied to the sampled-data representation of a nonlinear system with the time-delay input. Additionally, the delay in input is time varying and its amplitude is bounded. The maximum time-delay in input is assumed to be two sampling periods. The mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. The computer simulation proves the proposed algorithm discretizes the nonlinear system with the variable time-delay input accurately.

Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints

  • Yu Li;Han Qing-Long;Sun Ming-Xuan
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.397-402
    • /
    • 2005
  • The guaranteed cost control problem for a class of linear systems with norm-bounded time-varying parameter uncertainties and input constraints is considered. A sufficient condition for the existence of guaranteed cost state feedback controllers is derived via the linear matrix inequality (LMI) approach, and a design procedure to guaranteed cost controllers is given. Furthermore, a convex optimization problem is formulated to determine the optimal guaranteed cost controller. An example is given to illustrate the effectiveness of the proposed results.

A Learning Controller for Gate Control of Biped Walking Robot using Fourier Series Approximation

  • Lim, Dong-cheol;Kuc, Tae-yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.85.4-85
    • /
    • 2001
  • A learning controller is presented for repetitive walking motion of biped robot. The learning control scheme learns the approximate inverse dynamics input of biped walking robot and uses the learned input pattern to generate an input profile of different walking motion from that learnt. In the learning controller, the PID feedback controller takes part in stabilizing the transient response of robot dynamics while the feedforward learning controller plays a role in computing the desired actuator torques for feedforward nonlinear dynamics compensation in steady state. It is shown that all the error signals in the learning control system are bounded and the robot motion trajectory converges to the desired one asymptotically. The proposed learning control scheme is ...

  • PDF

1기 무한모선 전력계통의 배선형 입출력 되먹임 선형화 제어 (Nonlinear Input-Output Feedback Linearizing Control of a Single Machine Infinite Bus Power System)

  • 김동건;김석균;윤태웅
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Many nonlinear controllers for the power system are based on nonlinear models involving the power angle as an element of the state, and therefore the reference value for the power angle is needed. As this reference value is not generally available, it is difficult to apply such nonlinear control methods in practice. To deal with this problem, we present an input-output feedback linearizing control scheme by selecting the output as a combination of the squared voltage and the relative frequency. It is shown that the internal dynamics are locally stable with controllable damping, and that the frequency remains bounded for all time. Simulations illustrate the effectiveness of the proposed method.

전력계통 안정화를 위한 비선형 입출력 궤환 선형화 제어기 (Nonlinear Input-Output Feedback Linearizing Control for Power System Stabilization)

  • 김동건;윤태웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.672-674
    • /
    • 2004
  • Many nonlinear controllers for the power system are based on nonlinear models involving the power angle as an element of the state, and therefore the reference value for the power angle is needed. As this reference value is not generally available, it is difficult to apply such nonlinear control methods in practice. To deal with this problem, we present an input-output feedback linearizing control scheme by selecting the output as a combination of the squared voltage and the relative frequency. It is shown that the internal dynamics are locally stable with controllable damping, and that the frequency remains bounded for all time. Simulations illustrate the effectiveness of the proposed method.

  • PDF