• Title/Summary/Keyword: boundary method

Search Result 7,444, Processing Time 0.038 seconds

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

A Method to Determine Optimum Viscoelastic Layer Thickness of Sandwich Plate for Maximum Modal Damping (샌드위치 평판의 모드 감쇠 최대화를 위한 점탄성층 두께 결정법)

  • Nam, Dae-Ho;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.690-696
    • /
    • 2006
  • Thickness of damping layer in sandwich plate needs to be optimized in order to make modal loss factor of the sandwich plate maximum. Since previous studies were interested in noise reductions over high frequency range, the modal properties were derived based on simply supported boundaries. This conventional formula is approximately applicable to other boundary conditions over high frequency range only. The purpose of this study is to propose a method to determine optimum damping layer thickness of sandwich plate for maximum modal damping in low frequency range when the boundary condition is not a simple support. The conventional RKU equation based on simply supported boundary is modified to reflect other boundary conditions and the modified RKU equation is subsequently applied to determine the optimum damping layer thickness for arbitrary conditions. In order to reflect frequency-dependent characteristics of elastic modulus of the damping layer, an iteration method is proposed in determining the modal properties. Test results on sandwich plates for optimum damping layer thickness are compared with predictions by the proposed method and conventional method.

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

Acoustic Characteristics Analysis of Cylindrical Array for the Directional and Omni-directional mode Using the Boundary Element Method (경계요소법을 이용한 원통형 배열센서의 지향성/무지향성 모드에 대한 음향특성해석)

  • Lee, Jung-Min;Seo, Hee-Seon;Cho, Yo-Han;Baek, Kwang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.922-927
    • /
    • 2009
  • The transducers used in active sonar on surface ships are packed in a specific geometry in the array drum in order to meet the requirements such as the source level, directional beam pattern, etc. This paper describes the acoustic characteristics of the cylindrical array which is based on a 64 vertical staves arrangement, each stave composed 5 independent transducers. Firstly, the single transducer on the rigid baffle in the water is analyzed with the Finite Element Method. From the result of the FE analysis nodal velocities on the radiation surface is calculated and used with the boundary conditions of the transducers mounted on the array drum. Then the acoustic pressure is calculated in the field points using the Boundary Element Method and the other acoustic informations, the source level, beam pattern, near field and far-field distance, were acquired.

NUMERICAL SOLUTION OF LAMINAR FLOW OVER SQUARE CYLINDER IN A CHANNEL AND EVALUATION OF LBM SIMULATION RESULTS (사각 실린더 주위의 2차원 층류 유동해석과 LBM 해석 결과의 평가)

  • Kim H.M.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.30-37
    • /
    • 2005
  • To evaluate LBM we performed the simulation of the unsteady two dimensional flow over a square cylinder in a channel in moderate Reynolds number range, $100\~500$ by using LBM and Fractional-Step method. Frist of all we compared LBM solution of Poiseuille flow applied Farout and periodic boundary conditions with the analytical solution to verify the applicability of the boundary conditions. For LBM simulation the calculation domain was formed by structured 500x100 grids. Prescribed maximum velocity and density inlet and Farout boundary conditions were imposed on the in-out boundaries. Bounceback boundary condition was applied to the channel and the cylinder waifs. The flow patterns and vortex shedding strouhal numbers were compared with previous research results. The flow patterns by LBM were in agreement with the flow pattern by fractional step method. Furthermore the strouhal number computed by LBM simulation result was more accurate than that of fractional step method through the comparison of the previous research results.

Application of Convolutional Perfectly Matched Layer to Numerical Elastic Modeling Using Rotated Staggered Grid (회전된 엇갈린 격자를 이용한 탄성파 모사에의 CPML 경계조건 적용)

  • Cho, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.57-62
    • /
    • 2008
  • Finite difference method using not general SSG(standard staggered grid) but RSG(rotated staggered grid) was applied to simulation of elastic wave propagation. Special free surface boundary condition such as imaging method is needed in finite difference method using SSG in elastic wave propagation but free surface boundary condition in finite difference method using RSG is easily solved with adding air layer. Recently PML(Perfectly Matched layer) is widely used to eliminate artificial reflection waves from finite boundary because of its' greate efficiency. Absorbing ability of CPML(convolutional Perfectly Matched Layer) that is more efficient than that of PML was applied to FDM using RSG in this study. The results of CPML eliminated artificial boundary waves very effectively in FDM using RSG in being compared with that of Cerjan's absorbing method.

  • PDF

the Combination of Wavelet with Boundary Element Method for the Efficient Solution of Maxwell's Equations (Maxwell 방정식의 효율적인 풀이를 위한 경계요소법과 웨이브렛의 결합)

  • Kim, Hyun-Jun;Lee, Seung-Gol;O, Beom-Hoan;Lee, El-Hang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.6
    • /
    • pp.24-35
    • /
    • 2002
  • The wavelet transform is combined with the boundary element method (BEM), to solve efficiently the Maxwell's equation and the proposed method is applied to the electromagnetic problem for the analysis of topological effects of phase-shifting masks. The accuracy of the module developed was verified by comparison with both analytic solutions and published results. In addition, it was found that the boundary element method in combination with the wavelet matrix transform would be more efficient than the conventional methods based on the BEM in views of the calculation speed and the usage of computer memory.

Semi-analytical elastostatic analysis of two-dimensional domains with similar boundaries

  • Deeks, Andrew J.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.99-118
    • /
    • 2002
  • The scaled-boundary finite element method is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one coordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) coordinate direction. These coordinate directions are defined by the geometry of the domain and a scaling centre. This paper presents a general development of the scaled boundary finite-element method for two-dimensional problems where two boundaries of the solution domain are similar. Unlike three-dimensional and axisymmetric problems of the same type, the use of logarithmic solutions of the weakened differential equations is found to be necessary. The accuracy and efficiency of the procedure is demonstrated through two examples. The first of these examples uses the standard finite element method to provide a comparable solution, while the second combines both solution techniques in a single analysis. One significant application of the new technique is the generation of transition super-elements requiring few degrees of freedom that can connect two regions of vastly different levels of discretisation.

Boundary Artifacts Reduction in View Synthesis of 3D Video System (3차원 비디오의 합성영상 경계 잡음 제거)

  • Lee, Dohoon;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • This paper proposes an efficient method to remove the boundary artifacts of rendered views caused by damaged depth maps in the 3D video system. First, characteristics of boundary artifacts with the compression noise in depth maps are carefully studied. Then, the artifacts suppression method is proposed by the iterative projection onto convex sets (POCS) algorithm with setting the convex set in pixel and frequency domain. The proposed method is applied to both texture and depth maps separately during view rendering. The simulation results show the boundary artifacts are greatly reduced with improving the quality of synthesized views.

Inverse Heat Transfer Analysis Using Monte Carlo Method in Gas-Filled Micro-Domains Enclosed by Parallel Plates (몬테카를로 방법을 이용한 기체로 채워진 평판 사이의 마이크로 역열전달 해석)

  • Kim, Sun-Kyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.657-664
    • /
    • 2011
  • This study proposes an inverse method for estimating the boundary temperature in a gas-filled, onedimensional parallel domain enclosed by parallel plates. The distance between the plates is considered submicron to one mm. In the current method, it is assumed that the conditions of both heat flux and temperature are simultaneously applicable to one boundary, while no conditions are applicable to the other boundary The temperature on one of the boundaries should be inversely determined from the known temperature and heat flux on the other boundary. This study proposes a procedure for estimating the unknown boundary temperature through Monte Carlo simulation. Both the forward and inverse problems employ the Monte Carlo approach. The forward (direct) problem is solved by using the direct simulation Monte Carlo while the inverse solution is obtained by the simulated annealing.