• Title/Summary/Keyword: boost PFC converter

Search Result 179, Processing Time 0.025 seconds

Totem-pole Bridgeless Boost PFC Converter Based on GaN FETs (GaN FET을 이용한 토템폴 구조의 브리지리스 부스트 PFC 컨버터)

  • Jang, Paul;Kang, Sang-Woo;Cho, Bo-Hyung;Kim, Jin-Han;Seo, Han-Sol;Park, Hyun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.214-222
    • /
    • 2015
  • The superiority of gallium nitride FET (GaN FET) over silicon MOSFET is examined in this paper. One of the outstanding features of GaN FET is low reverse-recovery charge, which enables continuous conduction mode operation of totem-pole bridgeless boost power factor correction (PFC) circuit. Among many bridgeless topologies, totem-pole bridgeless shows high efficiency and low conducted electromagnetic interference performance, with low cost and simple control scheme. The operation principle, control scheme, and circuit implementation of the proposed topology are provided. The converter is driven in two-module interleaved topology to operate at a power level of 5.5 kW, whereas phase-shedding control is adopted for light load efficiency improvement. Negative bias circuit is used in gate drivers to avoid the shoot-through induced by high speed switching. The superiority of GaN FET is verified by constructing a 5.5 kW prototype of two-module interleaved totem-pole bridgeless boost PFC converter. The experiment results show the highest efficiency of 98.7% at 1.6 kW load and an efficiency of 97.7% at the rated load.

Implementation of the BLDC Motor Drive System using PFC converter and DTC (PFC 컨버터와 DTC를 이용한 BLDC 모터의 구동 시스템 구현)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.62-70
    • /
    • 2007
  • In this paper, the boost Power Factor Correction(PFC) technique for Direct Torque Control(DTC) of brushless DC motor drive in the constant torque region is implemented on a TMS320F2812DSP. Unlike conventional six-step PWM current control, by properly selecting the inverter voltage space vectors of the two-phase conduction mode from a simple look-up table at a predefined sampling time, the desired quasi-square wave current is obtained, therefore a much faster torque response is achieved compared to conventional current control. Furthermore, to eliminate the low-frequency torque oscillations caused by the non-ideal trapezoidal shape of the actual back-EMF waveform of the BLDC motor, a pre-stored back-EMF versus position look-up table is designed. The duty cycle of the boost converter is determined by a control algorithm based on the input voltage, output voltage which is the dc-link of the BLDC motor drive, and inductor current using average current control method with input voltage feed-forward compensation during each sampling period of the drive system. With the emergence of high-speed digital signal processors(DSPs), both PFC and simple DTC algorithms can be executed during a single sampling period of the BLDC motor drive. In the proposed method, since no PWM algorithm is required for DTC or BLDC motor drive, only one PWM output for the boost converter with 80 kHz switching frequency is used in a TMS320F2812 DSP. The validity and effectiveness of the proposed DTC of BLDC motor drive scheme with PFC are verified through the experimental results. The test results verify that the proposed PFC for DTC of BLDC motor drive improves power factor considerably from 0.77 to as close as 0.9997 with and without load conditions.

A Study on ZVT Boost Converter Using a ZCS Auxiliary Circuit (ZCS 보조회로를 이용한 ZVT Boost 컨버터에 관한 연구)

  • Ryu D.K.;Lee W.S.;Choi T.Y.;Seo M.S.;Won C,Y.;Kim Y.R.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.129-132
    • /
    • 2001
  • Recently, a ZVT boost converter is embedded in a power factor correction system. The control circuit of the converter assures soft-switching for all the MOSFETs and load regulation. The PFC system contains additional control circuits which assure the input voltage in a sinusoidal form and feed-forward line voltage regulation. In this paper, a soft switching boost converter with zero-voltage transition(ZVT) main switch using zero-current switching(ZCS) auxiliary switch is proposed. Operating intervals of the converter are persented and analyzed. The proposed results show that the main switch maintains UT while auxiliary switch retains ZCS for the complete specified line and load conditions.

  • PDF

A Study on High Efficiency OBC with Wide Range Output Using Isolated Current-Fed PFC Converter (절연형 전류원 PFC 컨버터를 사용한 넓은 출력범위를 가지는 고효율 OBC에 대한 연구)

  • Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2019
  • OBC for battery charging of electric vehicles mainly consist of two stages including PFC circuit and isolated DC-DC converter circuit. In general, a non-isolated boost converter is used as the PFC circuit, and a resonant converter capable of ZVS (zero voltage switching) is used as the isolated DC-DC converter. In this paper, we propose an OBC composed of isolated current-fed type PFC circuit and buck DC-DC converter. The proposed OBC is easy to configure the circuit and controller, and can cope with a wide output range. In order to verify the validity of the proposed circuit, a prototype 3.3 ㎾ class prototype was fabricated. As a result, the maximum efficiency and the maximum power factor of 99.2% were confirmed under the operational stability and rated load conditions at the output voltage of 150V ~ 400V.

A Novel PFC AC/DC Converter for Reducing Conduction Losses (도통손실 저감을 위한 새로운 역률 보상 AC/DC 컨버터)

  • 강필순;김광태;홍순일;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.273-278
    • /
    • 1999
  • This paper presents a novel Power Factor Corrected(PFC) single-stage AC/DC Half-Bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel power factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V] output voltage are presented.

  • PDF

Design of Boost Converter PFC IC for Unity Power Factor Achievement (단일 역률 달성을 위한 Boost Converter용 PFC IC 설계)

  • Jeon, In-Sun;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Jo, Hyo-Mun;Lee, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.60-67
    • /
    • 2010
  • We designed Average Current Control PFC IC which has make the average value of boost inductor current became the shape of sine wave. Designed IC has fixed frequency of 75kHz to meet EMI standard requirement. And also RC compensation loop has been designed into the error amp and the current amp, in order that it has wide bandwidth for high speed control. And we use the oscillator which generates by square wave and triangle wave, and add to UVLO, OVP, OCP, TSD which is in order to operate stability. We simulated by using Spectre of Cadence to verify the unity power factor function and various protection circuits and fabricated in a $1{\mu}m$ High Voltage(20V) CMOS process.

Magnetic Coupled ZVT PWM Boost PFC Pre-regulator (에너지 회생 변압기를 사용한 영전압 과도상태(ZVT) 부스트 역률보상 회로)

  • Yang Joon-Hyun;Lee Dong-Young;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.548-551
    • /
    • 2001
  • A zero-voltage transition (ZVT) PWM boost PFC converter using a transformer to recover the resonant energy into the input voltage is proposed. The proposed converter reduces turn-off switching loss of the auxiliary switch. The resonant current of the auxiliary circuit is optimally reduced by the feed-forwarded input voltage. Moreover, the resonant energy of the auxiliary circuit is recovered into the load and input voltages. In this paper, the modes of converter operation are explained and analyzed, design guidelines are given, and experimental results of 1.2kW, 200kHz prototype system are presented.

  • PDF

Basic Study of a Phase-Shifted Soft Switching High-Frequency Inverter with Boost PFC Converter for Induction Heating

  • Kawaguchi, Yuki;Hiraki, Eiji;Tanaka, Toshihiko;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.192-199
    • /
    • 2008
  • This paper is mainly concerned with a high frequency soft-switching PWM inverter suitable for consumer induction heating systems. The proposed system is composed of a soft switching chopper based boost PFC converter stage with passive snubber and phase shifted PWM controlled full bridge ZVZCS high frequency inverter stage. Its fundamental operating performances are illustrated and evaluated in the experimental results. Its effectiveness is substantially proved on the basis of the experimental results from a practical point of view.

A Study on the Average Current-Mode Control AC/DC ZVT-Boost Converter with Active-Clamp Method (능동 클램프 방식을 이용한 AC/DC ZVT 승압형 컨버터의 평균전류모드 제어에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Lim, Nam-Hyuk;Yoon, Suk-Ho;Chang, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1005-1008
    • /
    • 2001
  • This paper presents average current-mode control AC/DC ZVT(Zero Voltage Transition) Boost Converter. This boost converter perceives feed forward signal of input and feedback signal of output for average current-mode control proposed converter employs active-clamp method for ZVT. This converter gives the good PFC(Power Factor Correction), low line current hormonic distortions and tight output voltage regulations. This converter also has a high efficiency by active-clamp method. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 150W, 120kHz prototype converter.

  • PDF

A Study on the Active PFC of BF converter (BF 컨버터의 능동 PFC에 관한 연구)

  • 송석호;이우철;임승하;사공석진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.82-92
    • /
    • 1999
  • In this paper, we realize the active PFC(Power Factor Correction) system of the BF(Boost Forward) converter with the PWM-PFM control technique to control DC output voltage, to rermve the noise like hanronics at the output voltage, amd to control the input ClUTent with sinusoidal wave synchronized by the source voltage. We take the simulation and analyze the switching signal of the BF converter, input/output voltage and current, its harmonics and power factor through PSpice. And it has bren obtained harmonic reduction and efficiency improverrent.errent.

  • PDF