• Title/Summary/Keyword: bond zone

Search Result 124, Processing Time 0.024 seconds

Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals - (스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

Macro and Micro-electrochemical Characteristics on Dissimilar Welding Metal of Double Wall Gas Pipe for Duel Fuel Engine (이중 연료 엔진용 이중벽 가스 배관 이종 용접부의 매크로 및 마이크로 전기화학적 특성)

  • Kim, Seong-Jong;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • This study compared the macro and micro electrochemical characteristics at the local area of welding metal on dissimilar welding parts for type 304 stainless steel (SS) and type 316L SS. The materials are used for double wall gas pipe of duel fuel engine for a ship. The various potentiodynamic experiments were performed several times in 10% ${H_2C_2O_2}{\cdot}{H_2O}$ solution using macro and micro methods, respectively. The micro electrochemical experiments conducted to resolve at local area on cross-section of dissimilar welding materials by micro-droplet cell device. The micro-droplet cell techniques can be used almost electrochemical experiments to resolve corrosion characteristics of the limited electrode area of the metallic surface between wetted spot of working electrode and tip of sharpened capillary tube. The results of macro electrochemical experiments show that resistance of active dissolution reaction at welding zone was high due to low current density by formation of passivation protection film at passive region. According to the micro electrochemical experiment, the corrosion current density of welding zone and bond zone were relatively high.

Microstructures and Hardness of CO2 Laser Welds in 409L Ferritic Stainless Steel (409L 페라이트계 스테인리스강 CO2레이저 용접부의 미세조직과 경도)

  • Kong, Jong Pan;Park, Tae Jun;Na, Hye Sung;Uhm, Sang Ho;Kim, Jeong Kil;Woo, In Su;Lee, Jong Sub;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.297-304
    • /
    • 2010
  • The microstructure and hardness of $CO_2$ laser welds were investigated in the Ti-stabilized ferritic stainless steel 409L. The observed specimen was welded in a fully penetrated condition in which the power was 5 kW and the welding speed 5 m/min. The grain structure near the bond line of the laser welds was produced by epitaxial growth. The grain size was the largest in the fusion zone, and HAZ showed nearly the same grain size as that of the base metal. The HAZ microstructure consisted of subgrains and precipitates that were less than 100 nm in size and that were located along the subgrain boundaries. On the other hand, the hardness was the highest in the fusion zone due to the large amount of small precipitates present. These were composed of TiN, Ti(C,N) and $TiO_2$+Ti(C,N). The hardness decreased continuously from the fusion zone of the base metal. The HAZ hardness was slightly greater than that of the base metal due to the existence of subgrains and precipitates in the subgrain boundary.

Hot Corrosion and Thermally Grown Oxide Formation on the Coating of Used IN738LC Gas Turbine Blade (사용된 IN738LC 가스 터빈 블레이드 코팅층의 고온 부식 및 Thermally Grown Oxide 형성 거동)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • In this study, defects generated in the YSZ coating layer of the IN738LC turbine blade are investigated using an optical microscope and SEM/EDS. The blade YSZ coating layer is composed of a Y-Zr component top coat layer and a Co component bond coat layer. A large amount of Cr/Ni component that diffused from the base is also measured in the bond coat. The blade hot corrosion is concentrated on the surface of the concave part, accompanied by separation of the coating layer due to the concentration of combustion gas collisions here. In the top coating layer of the blade, cracks occur in the vertical and horizontal directions, along with pits in the top coating layer. Combustion gas components such as Na and S are contained inside the pits and cracks, so it is considered that the pits/cracks are caused by the corrosion of the combustion gases. Also, a thermally grown oxide (TGO) layer of several ㎛ thick composed of Al oxide is observed between the top coat and the bond coat, and a similar inner TGO with a thickness of several ㎛ is also observed between the bond coat and the matrix. A PFZ (precipitate free zone) deficient in γ' (Ni3Al) forms as a band around the TGO, in which the Al component is integrated. Although TGO can resist high temperature corrosion of the top coat, it should also be considered that if its shape is irregular and contains pore defects, it may degrade the blade high temperature creep properties. Compositional and microstructural analysis results for high-temperature corrosion and TGO defects in the blade coating layer used at high temperatures are expected to be applied to sound YSZ coating and blade design technology.

Reinforced concrete beam-column joints with lap splices under cyclic loading

  • Karabinis, Athanasios I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.649-660
    • /
    • 2002
  • Experimental results are presented from tests conducted on reinforced concrete beam-column joints with lap splices under reversed cyclic loading simulating earthquake action. Response curves are compared for twenty-four specimens designed according to Eurocode 2. The main parameters of the investigation are, the geometry of the reinforcing bar extension, the applied axial load (normalized), the available cover over lap splice region extended as length required from Eurocode 2, as well as the shape and the volumetric percentage of the stirrups confining the lap splice zone. The results are evaluated with regards to the load intensity, the energy absorption capacity and the characteristics of the load deflection curve.

Failure Analysis of Welded Pipe in Water Supplies for Apartment

  • Lee, Jong Kwon;Hong, Kyung Tae;Hwang, Woon Seok;Koh, Yong Tae;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.67-71
    • /
    • 2004
  • Galvanized Steel pipes have been widely used in industries and apartments, Unexpected early leakage has been found in an apartment. Tunneling corrosion or penetration was found in the water supply pipes. The chemical compositions of the pipes and properties of coating layer were evaluated. The pipes met the specification of KS D 3507. The cause of early failure was analyzed through the examination of macrostructures and microstructures, It was found that the pipes were failed by grooving corrosion, which resulted from galvanic corrosion of weld bead and matrix.

The Study on Microstructures and Mechanical Properties of Mild Steel Joined with Various Spot Welding Conditions (점용접 조건에 의한 연강의 미세조직 및 기계적특성에 관한 연구)

  • 강연철;김대영;김완기;김석원
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Spot welding, namely a kind of electric resisting welding has been used widely in field of automobile and aircraft industries because of easiness to apply. Specimens used in this study was a mild steel of 1.2mm thickness and the electrode was a Cu-Cr alloy of 6mm diameter. The surface sheared of specimens after testing of tensile shear was observed by SEM(scanning electron microscope) after ultrasonic cleaning for 10min., and microstructures and grain size of all specimens were measured with using of O.M.(Optical microscope). By the means of measurement and observations of tensile shear load, fatigue strength and share surface, the weldability of spot welding was evaluated. When tensile shearing testing, fracture starting point in all specimens was took place at the bond between HAZ(Heat affected zone) and nugget. With increasing in number of layers, fatigue strength was decreased. With increasing in electric current, grain size in the HAZ became more fine.

  • PDF

An Experimental Study on Development Length of Strand in Pretensioned Concrete Members (프리텐션 부재의 휨부착에 의한 강연선 정착길이 연구)

  • 오병환;최영철;김의성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.367-370
    • /
    • 1999
  • An experimental study was carried out to estimate development lengths of the prestressing strand in pretensioned beams. Recent studies had indicated that current desing provision were inadequate. Objective of this investigation is to determine the effect of strand diameter and concrete cover in pretensioned beams. Strand of the 1.52cm diameter is more useful and economic than that of the 12.7mm diameter, but current provision does not include 15.2mm diameter strand in experimental data. Because the property of strand has been developed, current provision need to be improved. Based on the experimental data, it was determined that bond failure would be prevented if no cracking occured in transfer zone of a pretensioned strand.

  • PDF

Corelationship between Interfacial Fracture Toughness and Mechanical Properties of Concrete (계면파괴인성과 콘크리트 역학적 성질의 상관관계)

  • 이광명;안기석;이회근;김태근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.359-364
    • /
    • 1998
  • The interfacial zone in concrete materials is extensive, geometrically complex, and constitutes inherently weak zones that limit the concrete performance. Motar-aggregate interfaces play a major role in the fracture processing in concrete composites. Also, the interfacial bond considerably influence mechanical properties of concrete such as modulus of elasticity, strength, and fracture energy, Characterization of the interfacial properties is, therefore, essential to overcome the limitations associated with the interfaces. an objective of this paper is to investigate the corelationship between the fracture toughness of mortar-aggregate interface and the concrete properties such as strengths and elastic moduli. It is observed from the test results that interface fracture toughness is closely related with the compressive strength rather than other properties. At early ages, the development of both tensile strength and elastic modulus are much greater thatn that of both interface fracture toughness and compressive strength.

  • PDF

Numerical Simulation of Ozone Concentration using the Local Wind Model in Pusan Coastal Area, Korea (부산연안역에서 국지풍모델을 이용한 오존농도의 수치모의)

  • Jeon, Byung-Il;kim, Yoo-Keun;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.335-350
    • /
    • 1997
  • Numerical simulations of photochemical air pollution (CBM: Carbon-Bond Mechanisms under a theoretical three-dimensional local wind system are carried to clarify the fundamental characteristics of the effects of local wind on photochemical air pollution. According to the AWS data of Pusan coastal area and KMA, the surface wind of Pusan during summertime showed a very remarkable land and sea breeze circulation. The ozone concentration distribution using local wind model showed that high ozone concentration zone near coastal area moved toward inland In the afternoon. This change implies a sea breeze Increases the ozone concentration, but a land breeze decreases it in Pusan coastal area.

  • PDF