• Title/Summary/Keyword: bond structure

Search Result 1,124, Processing Time 0.022 seconds

Annealing effects of organic inorganic hybrid silica material with C-H hydrogen bonds (C-H 수소결합을 갖는 유무기 하이브리드 물질에서의 열처리 효과)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.20-25
    • /
    • 2007
  • In this paper, It was reported the dielectric constant in organic inorganic hybrid silica material such as SiOC film modeling of bond structure by annealing in organic properties. The organic inorganic hybrid silica material were deposited using bis-trimethylsilymethane (BTMSM, [(CH3)3Si]2CH2) and oxygen gas precursor by a plasma chemical vapor deposition (CVD). The organic inorganic hybrid silica material have three types according to the deposition condition. The dielectric constant of the films were performed MIS(Al/Si-O-C film/p-Si) structure. The C 1s spectra in organin inorganic silica materials with the flow rate ratio of O2/BTMSM=1.5 was organometallic carbon with the peak 282.9 eV by XPS. It means that organometallic carbon component is the cross-link bonding structure with good stability. The dielectric constant was the lowest at annealed films with cross-link bonding structure.

Pharmacophore Modelling, Quantitative Structure Activity Relationship (QSAR) and Docking Studies of Pyrimidine Analogs as Potential Calcium Channel Blockers

  • Choudhari, Prafulla B.;Bhatia, Manish S.;Jadhav, Swapnil D.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.99-103
    • /
    • 2013
  • The present communication deals with the Pharmacophore modeling, 3D QSAR and docking analysis on series of Pyrimidine derivatives as potential calcium channel blockers. The computational studies showed hydrogen bond donor, hydrogen bond acceptor, and hydrophobic group are important features for calcium channel blocking activity. These studies showed that Pyrimidine scaffold can be utilized for designing of novel calcium channels blockers for CVS disorders.

A STDUY ON THE SURFACE MORPHOLOGY AND BOND STRENGTH OF DENTURE BASE RESIN TO COBALT-CHROMIUM ALLOY AFTER VARYING MODES OF SURFACE TREATMENT (COBALT-CHROMIUM 합금의 표면처리방법에 따른 레진 의치상의 접착강도 및 표면상태에 대한 연구)

  • Vang, Mong-Sook;Park, Young-Jon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.78-94
    • /
    • 1997
  • The purpose of this experiment was to determine the effects of various treatments on denture base resin to metal bond for cobalt-chromium alloy. The metal surface was treated as follows. Group 1 : Sandblasted with $50{\mu}m$ aluminum oxide. Group 2 : Sandblasted with $250{\mu}m$ aluminum oxide. Group 3 : Sandblasted with $250{\mu}m$ aluminum oxide and followed by silicoating. Group 4 : Electrochemically etched. Group 5 : treated with oxidizing solution. Group 6 : Beaded with $200{\mu}m$ retention structure and followed by silicoating. All specimens were applied with 4-META resin and were thermocycled 1000 times at temperature of $5^{\circ}C$ to $55^{\circ}C$. The effects of various surface treatments on the bond strength between 4-META resin and metal interface were measured by using the universal testing machine. All specimens were observed with SEM. The results were as follows 1. The bond strength of 4-META resin were significantly higher to Co-Cr alloy. 2. The bond strength decreased in the following orders : group 6, group 3, groups 1 and 2, group 4, group 5 and there was no statistically significant difference in bond strength among groups 1 and 2.(p>0.05) 3. The bond strength of cobalt-chromium alloy to 4-META resin were not significantly different.(p>0.05) 4. The treated surface of groups 1, 2 and 3 has more fine undercut than that of groups 4 and 5 with SEM. 5. Stable adhesion can be achieved when mechanically roughened metal surface by sandblasting than treating in an electrochemical etching and an oxidizing solution with potassium manganate.

  • PDF

A Study on Improvement of Metal-Ceramic Bonding Strength by Addition of Aluminum to Casting Metal Alloy (도재주조용 합금에 있어서 알루미륨 첨가에 따른 metal-ceramic과의 결합력 증진에 관한 연구)

  • Lee, Jae-Won;Min, Byong-Kuk;Han, Min-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • The Purpose of this study was to investigate the chemically improvement of metal-ceramics bond strength in the course of recasting Ni-Cr metal composite system with 10wt.%, 20wt.% and 30wt.% aluminum respectively. We have tested the bond strength, micro-structure, chemical composition of each metal composites and metal- ceramic bond interfaces by 3-point bending strength tester, SEM and EDS. We have made the conclusions through this study as follow: 1. The most suitable amount of aluminum to the Ni-Cr metal composite recasting is 20wt. % for improving metal-ceramics bond strength with debonding strength value of 49.54 kgf/mm2. 2. The aluminum must be changed to small spread alumina like phases and second aluminum-metal composites phases in the morphology of Ni-Cr metal composite system by adding during it's casting. These second phases have inclined functional oxide phases mixed with metal elements and they must take roll to improvement of metal-ceramics bond strength. 3. In the case of 30wt.% aluminum appended to Ni-Cr metal composite system, an excess of second inclined functional oxide phases produce cracks and spalling of them apart from it's base material. It must be a important factor of reduction of metal-ceramics bond strength.

  • PDF

A Study on Improvement of Housing Bond Information Relay System Using Blockchain (블록체인을 활용한 국민주택채권 정보 중계시스템 개선방안 연구)

  • Nam, Jin-Seok;Yang, Hae-Sool
    • Journal of Digital Convergence
    • /
    • v.15 no.8
    • /
    • pp.203-212
    • /
    • 2017
  • The National Housing Bond Information Relay System is a representative financial information relay system in which institutions are connected with center system. A centralized structure is expensive to construct and operate center, and there is a problem that all networks are disconnected when a failure occurs in the center system. In this paper, we propose the national housing bond information relay system model based on Blockchain technology that can process information safely and efficiently. The proposed model constructs a Blockchain network so that each institution that processes the national housing bond information can transmit information safely, and each institution manages the same distributed ledge by a smart contract. The proposed model can reduce the cost because it can process complicated national housing bond transaction information without a relay center, and a network usage and disk usage decreased by 1.7% and 8.53%.

Bond Behavior of Thin-Walled Rectangular Profiled Steel Sheet Concrete Short Columns (절곡된 단면을 갖는 얇은 판요소 콘크리트 충전 각형강관 기둥의 부착거동)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.233-241
    • /
    • 2005
  • The paper is presented experimental study results on bond stress between profiled steel and concrete in Profiled SPC(Profiled Steel Plate Concrete) rectangular steel tubes through an experimental program in which 13 pull-out specimens were tested. Advantages and class of composite members and current problems of construction work are noted, past research of PSSC is described. An experimental study is described and evaluated. The bond capacity is interrelated with slip at the steel concrete interface. The factors influencing the mechanism of bond stress transfer were the cross section shape, length/diameter, diameter/thickness and environmental parameters (temperature, moisture). The results of experimental program indicated that the force transfer could be characterized into two regions The first region was governed by bond with no relative slip between the profiled steel and concrete. The second region occurs after the chemical debonding. Bond stress transfer in this region was governed by frictional resistance between profiled steel and concrete and cross section shapes. The important factors influencing the magnitude of frictional resistance are the profiled steel shapes, length/diameter and environmental parameters. (temperature, moisture)

Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods

  • Lee, Ji-Hyun;Lee, Chang-Hoon;Park, Sung-S.;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.277-280
    • /
    • 2011
  • We studied the relative stability and atomic structure of five $C_{20}^{2+}$ isomers obtained by two-electron ionization of a $C_{20}$ cage (the smallest fullerene). All the isomers are bond-stretch isomers, i.e., they differ in bond length. In particular, in one of the isomers with Ih symmetry, all the bond lengths are equal. Full geometry optimizations of the dipositive ion $C_{20}^{2+}$ were performed using the hybrid density functional (B3LYP/6-31G(d)) methods. All isomers were found to be true minima by frequency analysis at the level of B3LYP/6-31G(d) under the reinforced tight convergence criterion and a pruned (99,590) grid. The zero-point correction energy for the cage bond-stretch isomers was in the increasing order $D_{2h}<C_{2h}<C_2<T_h<I_h$ of $C_{20}^{2+}$. The energy difference among the isomers of cage dipositive ions was less than that among neutral cage isomers. Our results suggest that these isomers show bond-stretch isomerism and that they have an identical spin state and an identical potential energy curve. Although the predominant electronic configurations of the isomers are similar, the frontier orbital characteristics are different, implying that we could anticipate an entirely different set of characteristic chemical reactions for each type of HOMO and LUMO.

Structure and properties of ion beam deposited diamond-like carbon films (이온빔 합성법에 의해 증착된 다이아몬드성 카본 필름의 구조 및 특성)

  • 김성화;이광렬;은광용
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.346-352
    • /
    • 1999
  • Diamond-like carbon (DLC) lims were deposited by using end hall type ion gun. Benzene gas was used for the generation of carbon ions. In order to systematically control the ion energy, we applied to the substrate DC, pulsed DC or 250 kHz medium frequency bias voltage, DLC films of superior mechanical properties of hardness 39$\pm$4 GPa and elastic mudulus 290$\pm$50GPa (2 to 6 times better than those of the films deposited by plasma assisted CVD method) could be obtained. Deposition rate was much higher than when using Kaufman type ion source, which results from higher ion beam current of end hall type ion gun. The mechanical properties and atomic bond structure were independent of the bias voltage type ion gun. The mechanical properties and atomic bond structure were independent of the bias voltage type but intimately related with the magnitude of the bias voltage. With increasing the negative bias voltage, the structure of the films changed to graphitic one resulting in decreased content of three dimensional inter-links. Degradation of the mechanical properties with increasing bias voltage could be thus understood in terms of the content odf three dimensional inter-links.

  • PDF