• 제목/요약/키워드: bond performance

검색결과 696건 처리시간 0.03초

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

Novel Pseudoceramides And Their Synthesis Using Alkyl Ketene Dimer

  • Park, Byeong-Deog;Lee, Ki-Mu;Park, Ik-Ju;Song, Young-Jin;Lee, Jung-Suk;Lee, Myung-Jin
    • 대한화장품학회지
    • /
    • 제23권3호
    • /
    • pp.92-96
    • /
    • 1997
  • Nowadays, ceramides have been found to be an important component in the outermost layer of the skin - the stratum corneum. It is undersrood that ceramides play an important role in structure and maintenance of the interellular lipid lamella structure in the SC layer. Thus, many efforts have been made by the cosmetics and pharmaceutical industries to get human skin-identical ceramides or pseudoceramides which show similar performance with natural ceramides. The purpose of our study was to systhesize new pseudoceramides via an effective and economical systhetic pathway and to show their performance of skin restoratio. Four kinds of the new pseudoceramides were synthesized by the reaction of alcoholic amine and alkyl ketene dimer. First of all, PC-4 and PC-5 were synthesized by the reaction of 3-amino-1,2-propanidiol and serinol with alkyl ketene dimer respectively. After that, PC-4R and PC-5R were produced by changign kitone group at $\beta$-position to amide bond of above synthesized PC-4 and PC-5 into hydroxyl group using NaBH4 respectively. Their expected structures were conformed by the NMR, IR spectra, and elemental analysis. A study to show the restoration effectiveness was performed in which human skin was pretreated with high concentration of SDS surfactant solution. Using 0.5% solution of above synthesized pseudoceramides, there was the significantly faster restoration of the damaged than that of placebe itself treatment.

  • PDF

Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips

  • Hawileh, Rami A.;Abdalla, Jamal A.;Tanarslan, Murat H.;Naser, Mohannad Z.
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.193-206
    • /
    • 2011
  • The use of Carbon Fiber Reinforced Polymers (CFRP) to strengthen reinforced concrete beams under bending and shear has gained rapid growth in recent years. The performance of shear strengthened beams with externally bonded CFRP laminate or fabric strips is raising many concerns when the beam is loaded under cyclic loading. Such concerns warrant experimental, analytical and numerical investigation of such beams under cyclic loading. To date, limited investigations have been carried out to address this concern. This paper presents a numerical investigation by developing a nonlinear finite element (FE) model to study the response of a cantilever reinforced concrete T-beam strengthened in shear with side bonded CFRP fabric strips and subjected to cyclic loading. A detailed 3D nonlinear finite element model that takes into account the orthotropic nature of the polymer's fibers is developed. In order to simulate the bond between the CFRP sheets and concrete, a layer having the material properties of the adhesive epoxy resin is introduced in the model as an interface between the CFRP sheets and concrete surface. Appropriate numerical modeling strategies were used and the response envelope and the load-displacement hysteresis loops of the FE model were compared with the experimental response at all stages of the cyclic loading. It is observed that the responses of the FE beam model are in good agreement with those of the experimental test. A parametric study was conducted using the validated FE model to investigate the effect of spacing between CFRP sheets, number of CFRP layers, and fiber orientation on the overall performance of the T-beam. It is concluded that successful FE modeling provides a practical and economical tool to investigate the behavior of such strengthened beams when subjected to cyclic loading.

핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구 (Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding)

  • 박순섭;고명진;김건희;원종호
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.

남부지역의 태양열이용 열펌프식 온수.난방시스템의 실증연구 분석 (Analysis of demonstration research on solar heat pump system for room and hot water heating in the southern part of South Korea)

  • 선경호;김기선
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.198.1-198.1
    • /
    • 2010
  • 우리나라 남부지방은 대체적으로 태양 일사량이 풍부하여 태양열 시스템의 설치조건으로는 가장 좋은 지역이다. 현재까지 국내에 보급된 태양열 시스템은 외기조건이 불량한 경우에는 비효율적이다. 최근 태양열 온수기는 전국적으로 매우 활발히 보급되고 있고 태양열 온수기에 대한 일반인들의 인식은 그 어느 때보다 높다고 할 수 있다. 태양열이용 열펌프시스템 기술은 소형 온수기에의 적용 뿐 아니라 건물의 난방기술에도 적용되고 있다. 본 연구에서는 태양열 집열기 직접 팽창식 열펌프시스템(이하 '태양열 시스템')의 열성능 효율 향상에 가장 많이 기여하는 팽창장치와 롤본드형 태양열집열기에 대하여 실험하였고 현장 적용가능성을 분석하였다. 또한 태양열 열펌프식 온수 및 난방시스템의 한국의 남부지방에서의 적용가능성은 지난 관련연구결과를 분석하여 비교하여 모색하였다.

  • PDF

TiO2/Carbon Composites Prepared from Rice Husk and the Removal of Bisphenol A in Photocatalytic Liquid System

  • Kim, Ji-Yeon;Kwak, Byeong-Sub;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.344-350
    • /
    • 2010
  • The improved photocatalytic performance of a carbon/$TiO_2$ composite was studied for the Bisphenol A (BPA) decomposition. Titanium tetraisopropoxide (TTIP) and a rice husk from Korea were heterogeneously mixed as the titanium and carbon sources, respectively, for 3 h at room temperature, and then thermally treated at $600^{\circ}C$ for 1 h in $H_2$ gas. The transmission electron microscopy (TEM) images revealed that the bulk carbon partially covered the $TiO_2$ particles, and the amount that was covered increased with the addition of the rice husk. The acquired carbon/$TiO_2$ composite exhibited an anatase structure and a novel peak at $2{\theta}=32^{\circ}$, which was assigned to bulk carbon. The specific surface area was significantly enhanced to 123~164 $m^2/g$ in the carbon/$TiO_2$ composite, compared to $32.43m^2/g$ for the pure $TiO_2$. The X-ray photoelectron spectroscopy (XPS) results showed that the Ti-O bond was weaker in the carbon/$TiO_2$ composite than in the pure $TiO_2$, resulting in an easier electron transition from the Ti valence band to the conduction band. The carbon/$TiO_2$ composite absorbed over the whole UV-visible range, whereas the absorption band in the pure$TiO_2$ was only observed in the UV range. These results agreed well with an electrostatic force microscopy (EFM) study that showed that the electrons were rapidly transferred to the surface of the carbon/$TiO_2$ composite compared to the pure $TiO_2$. The photocatalytic performance of the BPA removal was optimized at a Ti:C ratio of 9.5:0.5, and this photocatalytic composite completely decomposed 10.0 ppm BPA after 210 min, whereas the pure $TiO_2$ achieved no more than 50% decomposition under any conditions.

코코넛 섬유 혼입률에 따른 RHA 및 OPC 콘크리트의 역학적 특성 (Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios)

  • 이민희;권성준;박기태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.117-124
    • /
    • 2015
  • 건설분야에서 이산화탄소를 저감하기 위해 최근들어 친환경 혼화재료가 많이 사용되고 있다. 또한 콘크리트의 취성파괴를 보완하기 위해 다양한 섬유재의 사용이 고려되고 있다. 본 연구에서는 Rice Ash Husk를 10% 및 20% 치환한 콘크리트를 제조하였으며, 천연섬유 (코코넛 섬유)를 0.125%, 0.250%, 0.375% 혼입하면서 역학적 특성을 평가하였다. 평가를 위해 압축강도, 쪼갬인장강도, 휨강도, 내충격성, 부착강도 등이 평가되었으며, 휨부재의 하중에 따른 균열 및 변위를 분석하였다. RHA를 첨가한 콘크리트는 압축강도를 효과적으로 개선하였으며, 섬유재를 0.125%를 첨가하였을 때, 인장강도, 연성증가 그리고 균열저항성 등이 뚜렷하게 개선되었다. RHA 및 첨연섬유는 자원의 재활용 뿐 아니라 콘크리트의 성능도 개선할 수 있으므로 효과적인 건설재료라고 판단된다.

U형 PSC보외 전단거동 평가 (Evaluation on the Shear Performance of U-type Precast Prestressed Beams)

  • 유승룡
    • 콘크리트학회논문집
    • /
    • 제16권1호
    • /
    • pp.10-17
    • /
    • 2004
  • 활하중 4903Pa를 적용하여 최소깊이로 최적 설계한, 실물크기 U형 보에 대하여 전단경간과 내민보 길이를 다르게 하여 4번의 전단실험을 수행하였다. 토핑 콘크리트를 타설한 경간 10.5m 실물크기 U형 합성보는 보의 폭/깊이 비가 2이상이다. 이프리캐스트 프리스트레스트 보의 단부 전단거동을 평가하는 과정에서 다음과 같은 결론을 얻을 수 있었다. 1) 이 합성 U형 보는 최종파괴에 이를 때까지 일체 거동하였으며, 강도설계 규준에 합당한 휨과 전단거동을 보여주었다. 2) 본 연구결과의 범위 안에서, 본 연구에서 고려한 보깊이가 얕은 U형 보의 전체정착길이는 집중하중 위치에 대한 ACI 정착길이 요구식이 정착부착파괴의 가부를 결정하는 기준이 되었다 3) 단부쪽에 발생한 전단균열은 모두 정착파괴로 연결되는 것이 아니며, 선행된 슬립이 존재할 때 정착부착파괴로 유도될 수 있다. 4) 보 중앙축 부근의 일반휨철근은 보의 연성파괴를 유도하는 역할을 위하여 효과적으로 활용될 수 있다.