DOI QR코드

DOI QR Code

TiO2/Carbon Composites Prepared from Rice Husk and the Removal of Bisphenol A in Photocatalytic Liquid System

  • Kim, Ji-Yeon (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kwak, Byeong-Sub (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Published : 2010.02.20

Abstract

The improved photocatalytic performance of a carbon/$TiO_2$ composite was studied for the Bisphenol A (BPA) decomposition. Titanium tetraisopropoxide (TTIP) and a rice husk from Korea were heterogeneously mixed as the titanium and carbon sources, respectively, for 3 h at room temperature, and then thermally treated at $600^{\circ}C$ for 1 h in $H_2$ gas. The transmission electron microscopy (TEM) images revealed that the bulk carbon partially covered the $TiO_2$ particles, and the amount that was covered increased with the addition of the rice husk. The acquired carbon/$TiO_2$ composite exhibited an anatase structure and a novel peak at $2{\theta}=32^{\circ}$, which was assigned to bulk carbon. The specific surface area was significantly enhanced to 123~164 $m^2/g$ in the carbon/$TiO_2$ composite, compared to $32.43m^2/g$ for the pure $TiO_2$. The X-ray photoelectron spectroscopy (XPS) results showed that the Ti-O bond was weaker in the carbon/$TiO_2$ composite than in the pure $TiO_2$, resulting in an easier electron transition from the Ti valence band to the conduction band. The carbon/$TiO_2$ composite absorbed over the whole UV-visible range, whereas the absorption band in the pure$TiO_2$ was only observed in the UV range. These results agreed well with an electrostatic force microscopy (EFM) study that showed that the electrons were rapidly transferred to the surface of the carbon/$TiO_2$ composite compared to the pure $TiO_2$. The photocatalytic performance of the BPA removal was optimized at a Ti:C ratio of 9.5:0.5, and this photocatalytic composite completely decomposed 10.0 ppm BPA after 210 min, whereas the pure $TiO_2$ achieved no more than 50% decomposition under any conditions.

Keywords

References

  1. Krishnan, A. V.; Starhis, P.; Permuth, S. F.; Tokes, L.; Feldman, D. Endocrinology 2004, 132, 2279. https://doi.org/10.1210/en.132.6.2279
  2. Mountfort, K. A.; Kelly, J.; Jickells, S. M.; Castle, L. Food Addit. Contam. 1997, 14, 737. https://doi.org/10.1080/02652039709374584
  3. Brotons, J. A.; Olea-Serrano, M. F.; Villalobos, M.; Pedraza, V.; Olea, N. Environ. Health Perspect. 1995, 103, 608. https://doi.org/10.2307/3432439
  4. Le, H. H.; Carlson, E. M.; Chua, J. P.; Belcher, S. M. Toxicology Lett. 2008, 176, 149. https://doi.org/10.1016/j.toxlet.2007.11.001
  5. Chang, C.; Chou, C.; Lee, M. Analytica Chimica Acta 2005, 539, 41. https://doi.org/10.1016/j.aca.2005.03.051
  6. Kang, J.; Katayama, Y.; Kondo, F. Toxicology 2006, 217, 81. https://doi.org/10.1016/j.tox.2005.10.001
  7. Kuramitz, H.; Matsushita, M.; Tanaka, S. Water Res. 2004, 38, 2331. https://doi.org/10.1016/j.watres.2004.02.023
  8. Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. J. Photochem. Photobiol. A 2004, 162, 297. https://doi.org/10.1016/S1010-6030(03)00374-5
  9. Oku, A.; Tanaka, S.; Hata, S. Polymer 2000, 41, 6749. https://doi.org/10.1016/S0032-3861(00)00014-8
  10. Kang, J.; Kondo, F. Chemosphere 2002, 49, 493. https://doi.org/10.1016/S0045-6535(02)00315-6
  11. Rivaton, A.; Mailhot, B.; Soulestin, J.; Varghese, H.; Gardette, J. L. Polym. Degrad. Stabil. 2002, 75, 17. https://doi.org/10.1016/S0141-3910(01)00201-4
  12. Lee, J.; Kim, M.; Kim, B. Water Res. 2004, 38, 3605. https://doi.org/10.1016/j.watres.2004.05.015
  13. Yeo, M.; Kang, M. Water Res. 2006, 40, 1906. https://doi.org/10.1016/j.watres.2005.12.034
  14. Horikoshi, S.; Kajitani, M.; Serpone, N. J. Photochem. Photobiol. A 2007, 188, 1. https://doi.org/10.1016/j.jphotochem.2006.11.010
  15. Tsai, W.; Lee M.; Su, T.; Chang, Y. J. Hazard. Mater. 2009, 168, 26.
  16. Tsai, W.; Lai, C.; Su, T. J. Hazard. Mater. 2009, 134, 169.
  17. Chiang, K.; Lim. T. M.; Tsen, L.; Lee, C. Appl. Catal. A 2004, 261, 225. https://doi.org/10.1016/j.apcata.2003.11.004
  18. Baia, L.; Peter, A.; Cosoveanu, V.; Indrea, E.; Baia, M.; Popp, J.; Danciu, V. Thin Solid Films 2006, 511, 512. https://doi.org/10.1016/j.tsf.2005.12.024
  19. Ge, L. J. Mol. Catal. A 2008, 282, 62. https://doi.org/10.1016/j.molcata.2007.11.017
  20. Jeong, K. M.; Yeo, M.; Kang, M. J. Ind. Eng. Chem. 2008, 14, 396. https://doi.org/10.1016/j.jiec.2007.12.005
  21. Wang, H.; Hua, M.; Liu, N.; Xiaa, M.; Kea, F.; Bai, Y. Chem. Eng. Sci. 2007, 62, 3589. https://doi.org/10.1016/j.ces.2006.11.060
  22. Henke, L.; Nagy, N.; Krull, U. J. Biosens. Bioelectron. 2002, 17, 547. https://doi.org/10.1016/S0956-5663(02)00012-X
  23. Arnault, J. C.; Knoll, A.; Smigiel, E.; Cornet, A. Appl. Surf. Sci. 2001, 171, 189. https://doi.org/10.1016/S0169-4332(00)00550-X
  24. Lei, C. H.; Das, A.; Elliott, M.; Macdonald, J. E. Nanotechnology 2004, 15, 627. https://doi.org/10.1088/0957-4484/15/5/038

Cited by

  1. Hierarchically mesostructured TiO2/graphitic carbon composite as a new efficient photocatalyst for the reduction of CO2 under simulated solar irradiation vol.3, pp.12, 2013, https://doi.org/10.1039/c3cy00524k
  2. Surface modification and immobilization in poly(acrylic acid) of Ag/ZnO for photocatalytic degradation of endocrine-disrupting compounds vol.133, pp.25, 2016, https://doi.org/10.1002/app.43528
  3. mixtures in aqueous suspension vol.6, pp.22, 2016, https://doi.org/10.1039/C5RA25954A
  4. Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties vol.31, pp.6, 2010, https://doi.org/10.5012/bkcs.2010.31.6.1638
  5. Palmyra tuber peel derived activated carbon and anatase TiO2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation vol.104, pp.1, 2010, https://doi.org/10.1016/j.psep.2016.09.021