DOI QR코드

DOI QR Code

코코넛 섬유 혼입률에 따른 RHA 및 OPC 콘크리트의 역학적 특성

Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios

  • 이민희 (호원대학교 건축공학과) ;
  • 권성준 (한남대학교 건설시스템공학과) ;
  • 박기태 (한국건설기술연구원 인프라구조연구실)
  • 투고 : 2014.10.27
  • 심사 : 2014.12.26
  • 발행 : 2015.03.30

초록

건설분야에서 이산화탄소를 저감하기 위해 최근들어 친환경 혼화재료가 많이 사용되고 있다. 또한 콘크리트의 취성파괴를 보완하기 위해 다양한 섬유재의 사용이 고려되고 있다. 본 연구에서는 Rice Ash Husk를 10% 및 20% 치환한 콘크리트를 제조하였으며, 천연섬유 (코코넛 섬유)를 0.125%, 0.250%, 0.375% 혼입하면서 역학적 특성을 평가하였다. 평가를 위해 압축강도, 쪼갬인장강도, 휨강도, 내충격성, 부착강도 등이 평가되었으며, 휨부재의 하중에 따른 균열 및 변위를 분석하였다. RHA를 첨가한 콘크리트는 압축강도를 효과적으로 개선하였으며, 섬유재를 0.125%를 첨가하였을 때, 인장강도, 연성증가 그리고 균열저항성 등이 뚜렷하게 개선되었다. RHA 및 첨연섬유는 자원의 재활용 뿐 아니라 콘크리트의 성능도 개선할 수 있으므로 효과적인 건설재료라고 판단된다.

Currently, Eco-friendly construction materials are widely utilized for reducing $CO_2$ emission in construction. Furthermore various engineering fibers are also added for improving a brittle behavior in concrete. In the paper, concrete specimens with 10% and 20% replacement ratio with RHA (Rice Husk Ash) are prepared, and engineering behaviors in RHA and OPC concrete are evaluated with different addition of coconut fiber from 0.125~0.375% of volume ratio. Several basic tests including compressive strength, tensile strength, flexural strength, impact resistance, and bond strength are performed, and crack width and deflections are also measured in flexural test. RHA is evaluated to be very effective in strength development and 0.125% of fiber addition leads significant improvement in tensile strength, ductility, and crack resistance. RHA and coconut fiber are effective construction material both for reutilization of limited resources and performance improvement in normal concrete.

키워드

참고문헌

  1. Abdullah, A., Baharin, S., Noor, M. M., Hussin, K. (2011), Composite cement reinforced coconut fiber: Physical and mechanical properties and fracture behavior, Australian Journal of Basic and Applied Science, 5(7), 1228-1240.
  2. ACI Committee 544 (1999), Design Consideration for Steel Fiber Reinforced Concrete, ACI 544.4R, 12-24.
  3. Adebar, P., Mindess, S., St. Pierre, D., Olund, B. (1997), Shear tests of fiber concrete beams without stirrups, ACI Structural Journal, 94(1), 68-76.
  4. Chindaprasirt, P., Rukzon, S. (2008), Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar, Construction and Building Materials, 22(8), 1601-1606. https://doi.org/10.1016/j.conbuildmat.2007.06.010
  5. Cho, C. G., Han, S. J., Kwon, M. H., Lim, C. K. (2012), Seismic performance evaluation of reinforced concrete columns by applying steel fiber-reinforced mortar at plastic hinge region, Journal of the Korea Concrete Institute, 24(3), 241-248 (in Korean). https://doi.org/10.4334/JKCI.2012.24.3.241
  6. Choi, S. J., Ahn, J. K., Park, K. T., Kwon, S. J. (2014a), Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(1), 101-110 (in Korean). https://doi.org/10.11112/JKSMI.2014.18.1.101
  7. Choi, S. J., Park, K. T., Kwon, S. J. (2014b), Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(1), 75-83 (in Korean). https://doi.org/10.11112/jksmi.2014.18.1.075
  8. Kwon, S. J., and Song, H. W. (2010), Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling, Cement and Concrete Research, 40(1), 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  9. Lee, B. Y. (2012), Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(1), 55-63 (in Korean). https://doi.org/10.11112/jksmi.2012.16.1.055
  10. Li, V. C. (1998), Engineered Cementitious Composites-Tailored Composites through Micromechanical Modeling, in Fiber Reinforced Concrete: Present and the Future, edited by N. Banthia, A. Bentur, A. and A. Mufti, Canadian Society for Civil Engineering, Montreal, 64-97.
  11. Majid, A. (2014), Seismic performance of coconut-fibrereinforced-concrete columns with different reinforcement configurations of coconut-fibre ropes, Construction and Building Materials, 70(15), 681-690.
  12. Majid, A., Nawawi, C. (2013), Experimental investigations on coconut-fibre rope tensile strength and pullout from coconut fibre reinforced concrete, Construction and Building Materials, 41, 681-690. https://doi.org/10.1016/j.conbuildmat.2012.12.052
  13. Ramznianpour, A., Mahdikhani, M., and Ahmadibeni, G. (2009), The effect of rice husk ash on mechanical properties and durability of sustainable concretes, International Journal of Civil Engineering, 7(2), 83-91.
  14. Rukzon, S., Chindaprasirt, P., and Mahachai, R. (2009), Effect of grinding on chemical and physical properties of rice husk ash, International Journal of Minerals, Metallurgy and Materials, 16(2), 242-247. https://doi.org/10.1016/S1674-4799(09)60041-8
  15. Shah, S. P. (1992), Fiber reinforced cement composite, New York, McGraw-Hill, Inc.
  16. Sivaraja, M. (2010), Application of Coir Fibers as Concrete Composites for Disaster Prone Structures-R&D Project Report, Kongu Engineering college, Perundurai.
  17. Song, H. W., Kwon, S. J., Byun, K. J., Park, C. K. (2005), A Study on analytical technique of chloride diffusion considering characteristics of mixture design for high performance concrete using mineral admixture, Journal of KSCE, 25(1A), 213-223 (in Korean).
  18. Sugita, S., Yu, Q., Shoya, M., Tsukinaga, Y., Isojima, Y. (1997), The Concrete Way to Development, FIP Symposium 1997, Johannesburg, South Africa, 2, 621.
  19. Thomas, M. D. A., Bamforth, P. B. (1999), Modeling chloride diffusion in concrete: Effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6

피인용 문헌

  1. Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash vol.28, pp.6, 2016, https://doi.org/10.4334/JKCI.2016.28.6.647