• Title/Summary/Keyword: bond mechanism

Search Result 460, Processing Time 0.024 seconds

Hierarchical Topology/parameter Evolution in Engineering Design

  • Seo Ki sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.185-188
    • /
    • 2005
  • This paper suggests a control method for efficient topology/parameter evolution in a bond-graph-based GP design framework that automatically synthesizes designs for multi-domain, lumped parameter dynamic systems, We adopt a hierarchical breeding control mechanism with fitness-level-dependent differences to obtain better balancing of topology/parameter search - biased toward topological changes at low fitness levels, and toward parameter changes at high fitness levels. As a testbed for this approach, an eigenvalue assignment problem, which is to find bond graph models exhibiting minimal distance errors from target sets of eigenvalues, was tested and showed improved performance for various sets of eigenvalues.

  • PDF

$^{13}C$ NMR Studies of the Chelate Ring Opening-Closing Process in (Nitrilotriacetato)vanadate(V) dioxovandate(V) Ion

  • Lee, Man-Ho;Schaumburg, Kjeld
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.399-402
    • /
    • 1990
  • Activation parameters of the exchange between two types of glycinate groups in (nitrilotriacetato)dioxovanadate(V) ion, $[VO_2(NTA)]^{2-}$, have been determined as the results of $^{13}C$ NMR measurements over a range of temperatures between 277 and 306$^{\circ}K$. The exchange mechanism is proposed on the basis of the chelate ring opening-closing process, assuming rupture of the metal-oxygen (glycinate) bond trans to V = O bond to give a five-coordinated intermediate.

Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile

  • Barai, Hasi Rani;Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1829-1834
    • /
    • 2013
  • The nucleophilic substitution reactions of Y-aryl ethyl isothiocyanophosphates with substituted X-anilines and deuterated X-anilines were investigated kinetically in acetonitrile at $75.0^{\circ}C$. The free energy relationships with X in the nucleophiles exhibited biphasic concave downwards with a break point at X = H. A stepwise mechanism with rate-limiting bond formation for strongly basic anilines and with rate-limiting bond breaking for weakly basic anilines is proposed based on the negative and positive ${\rho}_{XY}$ values, respectively. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) changed gradually from primary normal with strongly basic anilines, via primary normal and secondary inverse with aniline, to secondary inverse with weakly basic anilines. The primary normal and secondary inverse DKIEs were rationalized by frontside attack involving hydrogen bonded, four-center-type TSf and backside attack involving in-line-type TSb, respectively.

Dual Substituent Effects on Pyridinolysis of Bis(aryl) Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1754-1758
    • /
    • 2014
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorothiophosphates (1) with X-pyridines are investigated kinetically in acetonitrile at $35.0^{\circ}C$. The free energy relationships with both X and Y are biphasic concave upwards with a break point at X = 3-Ph and Y = H, respectively. The sign of cross-interaction constants (CICs; ${\rho}_{XY}$) is positive with all X and Y. Proposed mechanism is a stepwise process with a rate-limiting leaving group departure from the intermediate with all X and Y. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). In the case of Y = electron-withdrawing groups, the cross-interaction between Y and Y, due to additional substituent Y, is significant enough to change the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1, indicative of the change of mechanism from a rate-limiting bond formation to bond breaking.

Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition

  • Seo, Hongmin;Cho, Kang Hee;Ha, Heonjin;Park, Sunghak;Hong, Jung Sug;Jin, Kyoungsuk;Nam, Ki Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Electrochemical water splitting to produce hydrogen energy is regarded as a promising energy conversion process for its environmentally friendly nature. To improve cell efficiency, the development of efficient water oxidation catalysts is essentially demanded. For several decades, 3d transition metal oxides have been intensively investigated for their high activity, good durability and low-cost. This review covers i) recent progress on 3d transition metal oxide electrocatalysts and ii) the reaction mechanism of oxygen evolving catalysis, specifically focused on the proposed pathways for the O-O bond formation step.

Analysis of the Solvolysis of Anthraquinone-2-Carbonyl Chloride in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.265-268
    • /
    • 2018
  • The solvolyses of anthraquinone-2-carbonyl chloride (1) were studied kinetically in 27 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolyses of anthraquinone-2-carbonyl chloride (1) obtained the l value of $2.11{\pm}0.11$, the m value of $0.54{\pm}0.06$, and the correlation coefficient of 0.955. The solvolysis reaction of 1 might proceed via an associative $S_N2$ mechanism enhancing bond making than bond breaking in the transition state (TS). This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.27).

The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation

  • Liu, Xian;Hu, Xinyu;Guan, Linxing;Sun, Wei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.481-497
    • /
    • 2017
  • In this paper, full-scale loading tests were performed on a rectangular segmental tunnel lining, which was assembled by steel composite segments, to investigate its load-bearing structural behavior and failure mechanism. The tests were also used to confirm the composite effect by adding concrete inside to satisfy the required performance under severe loading conditions. The design of the tested rectangular segmental lining and the loading scheme are also described to better understand the bearing capacity of this composite lining structure. It is found that the structural ultimate bearing capacity is governed by the bond capacity between steel plates and the tunnel segment. The failure of the strengthened lining is the consequence of local failure of the bond at waist joints. This led to a fast decrease of the overall stiffness and eventually a loss of the structural integrity.

Mechanism for the Reaction of Substututed Phenacyl Arenesulfonates with Substituted Pyridines under High Pressures

  • 박헌영;손기주;정덕영;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1179-1182
    • /
    • 1997
  • The rates for the reaction of (Z)-phenacyl (X)-benzenesulfonates with (Y)-pyridines in acetone were measured by an electrical conductivity method at 1-2000 bars and 45 ℃. The magnitudes of the Hammett reaction constants, ρX, ρY and ρZ, represent the degree of Nu-C bond formation and that of C-L bond breaking. The magnitude of correlation interaction term ρij can be used to determine the structure of the transition state (TS) for the SN reaction. As the pressure is increased, the Hammett reaction constants, ρX, |ρY| and ρZ are increased, but correlation interaction coefficient, |ρXZ| and ρYZ, are decreased. The results indicate that the reaction of (Z)-phenacyl (X)-benzenesulfonates with (Y)-pyridines probably moves from an associative SN2 to late-type SN2 mechanism by increasing pressure.

Solvolysis of (1S)-(+)-Menthyl Chloroformate in Various Mixed Solvents

  • Koh, Han Joong;Kang, Suk Jin
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.5
    • /
    • pp.309-312
    • /
    • 2021
  • The solvolysis of (1s)-(+)-menthyl chloroformate (1) were studied kinetically in 28 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolysis of 1 obtained the l value of 2.46 ± 0.18, the m value of 0.91 ± 0.07, and the correlation coefficient of 0.950. The solvolysis of 1 might proceed via an associative SN2 mechanism enhancing bond making than bond breaking in the transition state (TS). The value of l/m is 2.7 within the ranges of value found in associative SN2 reaction. This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.16).

The Kinetics and Mechanism of Nucleophilic Addition of Thioglycolic Acid to ${\beta}$-Nitrostyrene Derivatives

  • Kim, Tae-Rin;Huh, Tae-Sung;Han, In-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.4
    • /
    • pp.162-165
    • /
    • 1982
  • The rate constants of the nucleophilic addition of thioglycolic acid to the derivatives $(H,\;p-CH_3,\;p-CH_3O,\;p-Cl,\;p-NO_2)$ of ${\beta}$-nitrostyrene were determined by ultraviolet spectrophotometry. The rate equations which can be applied over a wide pH range were obtained. Therefrom a reaction mechanism was proposed. Above pH 8.5 sulfide anion adds to the double bond (Michael type addtion). However, below pH 8.5, the neutral molecule and $HSCH_2COO^{\theta}$ add to the double bond.