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Abstract

This paper suggests a control method for efficient topology/parameter evolution in a

bond-graph-based GP design framework that automatically synthesizes designs

multi-domain,

lumped parameter dynamic systems.

for

We adopt a hierarchical breeding

control mechanism with fitness-level-dependent differences to obtain better balancing

of topology/parameter search -

levels,

approach, an eigenvalue assignment problem,

exhibiting minimal distance errors from target sets of eigenvalues,

and toward parameter changes at high fitness levels.

biased toward topological changes at low fitness

As a testbed for this
which is to find bond graph models

was tested and

showed improved performance for various sets of eigenvalues.

1. Introduction

Evolutionary computation has been used

many times to automate the creation of
engineering designs, such as electrical,
mechanical, and mechatronic systems.

Especially, genetic programming has been used
for design of several patented electrical
circuits, controllers, and antennas [1,2].
Engineering design of dynamic systems usually
involves discovering topological connections
of components and optimizing of their numeric

parameters, simultaneously, SO is
topologically open—ended.

The topology specifies the system’ s
structure, which consists of the number and
type of component s and their
interconnections. On the other hand,
parameter optimization seeks the best
numerical values for given a topology.

However, no definitive approach has yet been
introduced for topology/parameter evolution.

Most approaches to finding better designs are
limited to using huge populations. The
key idea of our approach is to provide
different breeding probabilities for topology
and parameter operations according to the
fitness level of each subpopulation in a
genetic programming with fitness-stratified
populations. Additionally, more
topology-altering operations are executed in
earlier generations and more
parameter—altering operations are executed in
later generations.

The Bond Graph / Genetic Programming
(BG/GP) design methodology[3] has been
developed to overcome limitations of
single-domain design approaches and enable
open—ended search, based on the combination
of these two powerful tools.

As a test class of design problems, we have
chosen one in which the objective 1is to
realize a design having a specified set of
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eigenvalues. The eigenvalue  assignment
problem is well defined and has been studied
effectively using linear components with
constant parameters. Section 2 discusses the
nature of the topology/parameter design
problem and bond graph synthesis. Section 3
explains hierarchical probability control
method. Section 4 presents results for
eigenvalue design problems, and Section 5
concludes the paper.

2 .Topology/Parameter

Bond Graph Synthesis
2.1 The nature of topology/parameter design
in engineering problem

Most engineering design problems involve
making (or discovering good) topological
connections of components and optimizing
their numeric values in an open-ended manner.
That means both topology and parameter values
should be optimized[4].

Topology connection is represented as a
directed graph G with vertex set V and edge
set E, where V = { vo, U1, ***, Un-1 } and
EG) ={e={v,n Hui €V, vy €
V }. Given parameter values are represented
as a function G() = { (v, flwv)) | vi €

Design in

vV, flu) € R }.
In search for good designs for
topologically open dynamic systems, no

“topology can be evaluated in the absence of
an associated set of parameters; and
conversely, no set of parameter values can be
evaluated except within the context of a
given topology.

An obvious approach is to allocate to each
new topology whatever amount of parameter
search effort is needed to find at least a
locally optimal parameterization, before
judging the quality of the topology. A second
strategy might be to allocate a fixed amount
of search effort to each topology, adequate
to optimize the parameters in many cases.
However, such strategies may consume far more

search effort than 1is practical during a
simultaneous topology/parameter search, and
when to stop each parameter search is

difficult to determine.

2.2 Bond Graph Synthesis

Bond graph modeling is a powerful method
that enables a unified approach to the
analysis, synthesis and evaluation of dynamic
system. It represents the common energy

processes of multi-domain  systems -
electrical, mechanical, fluid, and thermal
systems - in one graphical notation [5,6].
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Fig. 1. The same bond graph model for
two different domains

Fig. 2. The scheme of topology/parameter
space in bond graphs

The scheme of topology/parameter search in
bond graphs is as follows. Figure 2 shows
component types typically used in bond
graphs, including junctions, sources of
effort or flow, oneport elements like
resistors, capacitors and inductors, 2-port
elements like transformers and gyrators, and
higher-level modules composed of lower-level
primitive elements. "Below the line" are
associated parameters.

3. Hierarchical breeding control

method

In this paper, we adopt a hierarchical
breeding control mechanism to obtain better
performance based on differential balancing
of topology-altering operations and
parameter—altering operations according to
fitness level, in a fitness-structured
multi-population model. The basic idea for
this control mechanism arises from observing
the human design process. Usually,
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preliminary or conceptual design involves
more structural modification, and final or
detailed design involves more parameter

tuning - 1.e., there is greater concentration
on design topology in the early stage and
more on parameter tuning in the later stage.
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Fig. 3. Hierarchical breeding control

structure. Subpopulations are organized in a
hierarchy with ascending fitness levels.
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Fig. 4. Distribution of breeding control
probability

4. Experiments and Analysis

To evaluate and compare the
approach with the previous one, the
eigenvalue assignment problem is used, for
which the design objective is to find bond
graph models with minimal distance errors
from a target set of eigenvalues. It is a
classical "inverse" design problem - seeking
something with given behavior, rather than
the "forward" analysis problem of calculating
the behavior of a given artifact.

proposed

4.1 Problem Definition
The following sets (consisting of various

6-, and 10-eigenvalue target sets,
respectively) were used for the genetic
programming runs:

Eigenvalue sets used in experiments:

1) {-12j, -2j, -30.5j}

2) {-10j, ~-110j, -33j }

3) {-20j, -120j, -77j}

4) {-1, -2, -3, -4, -5, -6}

5) {-20j, ~120j, -77j, ~124j, -412j }

6) {-1, -2, -3, -4, -5, -6, -7, -8, -9, -10}

The fitness function is defined as follows:
pair each target eigenvalue one:one with the
closest one in the solution; calculate the sum of
distance errors between each target eigenvalue
and the solution’ s corresponding eigenvalue,
divide by the order, and perform hyperbolic
scaling(not required with tournament selection,
but making the numerical answers easier to
interpret). Relative distance error (normed by
the distance of the target from the origin) is
used.

We used a strongly-typed version of lilgp [7]
to generate bond graph models. These examples
were run on a single Pentium IV 2.8GHz PC with

512MB RAM. The GP parameters were as shown
below.
Number of generations : 500
Population sizes . 100 in each of ten
subpopulat ions

Initial population: half_and_half
Initial depth : 3-6

Max depth : 12 (with 800 max_nodes)
Selection : Tournament (size=7)
Crossover : 0.9

Mutation : 0.1

The results of 6~ and 10~eigenvalue runs
are provided in Figures 5 and 6, showing
average distance error for each set across 10
experiments. Figure 5 illustrates the
comparison between the basic approach
(without topology/parameter control) and the
hierarchical topology/parameter breeding
control on typical complex conjugate and real
six-eigenvalue target sets. In all four sets,
numbered 1)-4), the average error in the
hierarchical topology/parameter breeding
control approach is smaller than that of the
basic approach. Figure 6 represents the
results on two 10-eigenvalue sets, set
numbers 5) and 6) above, and shows that the
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new approach also outperforms thebasic

approach on these problems.
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Fig. 6. Results for 10 eigenvalues
(set 1 is eigenvalue set 5 above, etc.)

There are other factors to be determined to
obtain optimal results, such as distribution
of breeding control rate for topology- and
parameter—altering operations, the control
rate for theintermediate topology, and the
ratio between fitness and generation etc.
Current results are due to simple setting of
control factors based on a few preliminary
experiments. Therefore, much improvement is
expected if optimal values of these control
factors are found through further experiments
and analysis.

5. Conclusion

This paper has introduced a hierarchical
breeding control method for efficient
topology/parameter evolution in
bond-graph-based GP design. We adopt a
hierarchical breeding control mechanism,
implemented in a set of subpopulations
separated hierarchically according to fitness
levels, to obtain better performance based on
balancing of topology/parameter search using
a given set of switched modular primitives.
Topology-altering operations are given higher

probability in high-fitness subpopulations,
and parameter—altering operations get higher
probability in lower-fitness subpopulations.
Simultaneously, in all subpopulations, the
percentage of topology-altering operations is
reduced as the number of generations
increases.

As a proof of concept for this approach,
the eigenvalue assignment problem, which is
to synthesize bond graph models with minimum
distance errors from pre-specified target
sets of eigenvalues, was used. Results showed
better performance for all tested eigenvalue
sets when the new topology/parameter control
method was used. This tends to support the

conjecture that a carefully tailored
representation and sophisticated
topology/parameter  control method will

improve the efficiency of GP search.
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