Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.1.12

Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition  

Seo, Hongmin (Department of Materials Science and Engineering, Seoul National University)
Cho, Kang Hee (Department of Materials Science and Engineering, Seoul National University)
Ha, Heonjin (Department of Materials Science and Engineering, Seoul National University)
Park, Sunghak (Department of Materials Science and Engineering, Seoul National University)
Hong, Jung Sug (Department of Materials Science and Engineering, Seoul National University)
Jin, Kyoungsuk (Department of Materials Science and Engineering, Seoul National University)
Nam, Ki Tae (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Abstract
Electrochemical water splitting to produce hydrogen energy is regarded as a promising energy conversion process for its environmentally friendly nature. To improve cell efficiency, the development of efficient water oxidation catalysts is essentially demanded. For several decades, 3d transition metal oxides have been intensively investigated for their high activity, good durability and low-cost. This review covers i) recent progress on 3d transition metal oxide electrocatalysts and ii) the reaction mechanism of oxygen evolving catalysis, specifically focused on the proposed pathways for the O-O bond formation step.
Keywords
Transition metal oxides; Electrodes; Water oxidation; Electrocatalyst; O-O bond formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. O. M. Bockris and T. N. Veziroglu, "Estimates of the Price of Hydrogen as a Medium for Wind and Solar Sources," Int. J. Hydrogen Energy, 32 [12] 1605-10 (2007).   DOI
2 I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov, and J. Rossmeisl, "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem, 3 [7] 1159-65 (2011).   DOI
3 H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser, "The Mechanism of Water Oxidation: from Electrolysis via Homogeneous to Biological Catalysis," Chem- CatChem, 2 [7] 724-61 (2010).
4 C. C. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo "Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction," J. Am. Chem. Soc., 135 [45] 16977-87 (2013).   DOI
5 L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, and L. Sun, "A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to that of Photosystem II," Nat. Chem., 4 [5] 418-23 (2012).   DOI
6 M. Yagi, E. Tomita, S. Sakita, T. Kuwabara, and K. Nagai, "Self-Assembly of Active $IrO_2$ Colloid Catalyst on an ITO Electrode for Efficient Electrochemical Water Oxidation," J. Phys. Chem. B, 109 [46] 21489-91 (2005).   DOI
7 R. D. Smith, B. Sporinova, R. D. Fagan, S. Trudel, and C. P. Berlinguette, "Facile Photochemical Preparation of Amorphous Iridium Oxide Films for Water Oxidation Catalysis," Chem. Mater., 26 [4] 1654-59 (2014).   DOI
8 A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, and M. Driess, "Active Mixed-Valent MnOx Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles," Angew. Chem., Int. Ed., 52 [50] 13206-10 (2013).   DOI
9 D. K. Bediako, Y. Surendranath, and D. G. Nocera, "Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel-Borate Thin Film Electrocatalyst," J. Am. Chem. Soc., 135 [9] 3662-74 (2013).   DOI
10 I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, and H. Dau, "Electrosynthesis, Functional, and Structural Characterization of a Water-Oxidizing Manganese Oxide," Energy Environ. Sci., 5 [5] 7081-89 (2012).   DOI
11 M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. Praneeth, M. Yoshida, K. Yoneda, and S. Kawata, "A pentanuclear Iron Catalyst Designed for Water Oxidation," Nature, 530 465-68 (2016).   DOI
12 M.-T. Zhang, Z. Chen, P. Kang, and T. J. Meyer, "Electrocatalytic Water Oxidation with a Copper (II) Polypeptide Complex," J. Am. Chem. Soc., 135 [6] 2048-51 (2013).   DOI
13 M. M. Najafpour and M. A. Isaloo, "Mechanism of Water Oxidation by Nanolayered Manganese Oxide: A Step Forward," RSC Advances, 4 [13] 6375-78 (2014).   DOI
14 K. Takada, K. Fukuda, M. Osada, I. Nakai, F. Izumi, R. A. Dilanian, K. Kato, M. Takata, H. Sakurai, E. T.-Muromachi, and T. Sasaki, "Chemical Composition and Crystal Structure of Superconducting Sodium Cobalt Oxide Bilayer-Hydrate," J. Mater. Chem., 14 [9] 1448-53 (2004).   DOI
15 T. Motohashi, Y. Katsumata, T. Ono, R. Kanno, M. Karppinen, and H. Yamauchi, "Synthesis and Properties of $CoO_2$, the x = 0 End Member of the $Li_xCoO_2$and $Na_xCoO_2$ Systems," Chem. Mater., 19 [21] 5063-66 (2007).   DOI
16 J. K. Norskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, and C. J. H. Jacobsen, "Universality in Heterogeneous Catalysis," J. Catal., 209 [2] 275-78 (2002).   DOI
17 M. Huynh, D. K. Bediako, and D. G. Nocera, "A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid," J. Am. Chem. Soc., 136 [16] 6002-10 (2014).   DOI
18 M. Zhang, M. de Respinis, and H. Frei, "Time-Resolved Observations of Water Oxidation Intermediates on a Cobalt Oxide Nanoparticle Catalyst," Nat. Chem., 6 362-67 (2014).   DOI
19 L.-P. Wang and T. V. Voorhis, "Direct-Coupling $O_2$ Bond Forming a Pathway in Cobalt Oxide Water Oxidation Catalysts," J. Phys. Chem. Lett., 2 [17] 2200-4 (2011).   DOI
20 J. B. Gerken, J. G. McAlpin, J. Y. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt, and S. S. Stahl, "Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: the Thermodynamic Basis for Catalyst Structure, Stability, and Activity," J. Am. Chem. Soc., 133 [36] 14431- 42 (2011).   DOI
21 M. Grzelczak, J. Zhang, J. Pfrommer, J. Hartmann, M. Driess, M. Antonietti, and X. Wang, "Electro-and Photochemical Water Oxidation on Ligand-Free $Co_3O_4$ Nanoparticles with Tunable Sizes," ACS Catal., 3 [3] 383-88 (2013).   DOI
22 J. D. Blakemore, H. B. Gray, J. R. Winkler, and A. M. Muller, "$Co_3O_4$ Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids," ACS Catal., 3 [11] 2497-500 (2013).   DOI
23 F. Jiao and H. Frei, "Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts," Angew. Chem., 121 [10] 1873-76 (2009).   DOI
24 K. Juodkazis, J. Juodkazyte, R. Vilkauskaite, and V. Jasulaitiene, "Nickel Surface Anodic Oxidation and Electrocaetalysis of Oxygen Evolution," J. Solid State Electrochem., 12 [11] 1469-79 (2008).   DOI
25 C. A. Kent, J. J. Concepcion, C. J. Dares, D. A. Torelli, A. J. Rieth, A. S. Miller, P. G. Hoertz, and T. J. Meyer, "Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine- Doped Tin Oxide Electrodes," J. Am. Chem. Soc., 135 [23] 8432-35 (2013).   DOI
26 H. Bode, K. Dehmelt, and J. Witte, "Zur Kenntnis der Nickelhydroxidelektrode- I. Uber das Nickel (II)-Hydroxidhydrat," Electrochim. Acta, 11 [8] 1079IN1-87 (1966).   DOI
27 K. Juodkazis, J. Juodkazyt , R. Vilkauskaite, B. ebeka, and V. Jasulaitiene, "Oxygen Evolution on Composite Ruthenium and Nickel Oxides Electrode," Chemija, 19 [1] 1-6 (2008).
28 C.-H. Kuo, I. M. Mosa, A. S. Poyraz, S. Biswas, A. M. El- Sawy, W. Song, Z. Luo, S.-Y. Chen, J. F. Rusling, and J. He, "Robust Mesoporous Manganese Oxide Catalysts for Water Oxidation," ACS Catal., 5 [3] 1693-99 (2015).   DOI
29 M. Dinca, Y. Surendranath, and D. G. Nocera, "Nickel- Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions," Proc. Natl. Acad. Sci., 107 [23] 10337- 41 (2010).   DOI
30 M. Huynh, C. Shi, S. J. Billinge, and D. G. Nocera, "Nature of Activated Manganese Oxide for Oxygen Evolution," J. Am. Chem. Soc., 137 [47] 14887-904 (2015).   DOI
31 T. Takashima, K. Hashimoto, and R. Nakamura, "Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by $MnO_2$ Electrocatalysts," J. Am. Chem. Soc., 134 [3] 1519-27 (2012).   DOI
32 T. Takashima, K. Hashimoto, and R. Nakamura, "Inhibition of Charge Disproportionation of $MnO_2$ Electrocatalysts for Efficient Water Oxidation under Neutral Conditions," J. Am. Chem. Soc., 134 [44] 18153-56 (2012).   DOI
33 H. Kim, J. Park, I. Park, K. Jin, S. E. Jerng, S. H. Kim, K. T. Nam, and K. Kang, "Coordination Tuning of Cobalt Phosphates towards Efficient Water Oxidation Catalyst," Nat. Commun., 6 8253 (2015).   DOI
34 K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, and K. T. Nam, "Hydrated Manganese (II) Phosphate ($Mn_3(PO_4)_2{\cdot}3H_2O$) as a Water Oxidation Catalyst," J. Am. Chem. Soc., 136 [20] 7435-43 (2014).   DOI
35 J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, and J. Kim, "A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency," J. Am. Chem. Soc., 136 [11] 4201-11 (2014).   DOI
36 K. Jin, A. Chu, J. Park, D. Jeong, S. E. Jerng, U. Sim, H.-Y. Jeong, C. W. Lee, Y.-S. Park, K. D. Yang, and K. T. Nam "Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis," Sci. Rep., 5 [10279] (2015).
37 D. Jeong, K. Jin, S. E. Jerng, H. Seo, D. Kim, S. H. Nahm, S. H. Kim, and K. T. Nam, "$Mn_5O_8$ Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH," ACS Catal., 5 [8] 4624-28 (2015).   DOI
38 M. W. Kanan and D. G. Nocera, "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and $Co^{2+}$," Science, 321[5892] 1072-75 (2008).   DOI
39 M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. K. Norskov, and A. T. Bell, "Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water," J. Am. Chem. Soc., 135 [36] 13521-30 (2013).   DOI
40 M. Dresselhaus and I. Thomas, "Alternative Energy Technologies," Nature, 414 [6861] 332-37 (2001).   DOI