Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.6.1829

Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile  

Barai, Hasi Rani (Department of Chemistry, Inha University)
Adhikary, Keshab Kumar (Department of Chemistry, Inha University)
Lee, Hai Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
The nucleophilic substitution reactions of Y-aryl ethyl isothiocyanophosphates with substituted X-anilines and deuterated X-anilines were investigated kinetically in acetonitrile at $75.0^{\circ}C$. The free energy relationships with X in the nucleophiles exhibited biphasic concave downwards with a break point at X = H. A stepwise mechanism with rate-limiting bond formation for strongly basic anilines and with rate-limiting bond breaking for weakly basic anilines is proposed based on the negative and positive ${\rho}_{XY}$ values, respectively. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) changed gradually from primary normal with strongly basic anilines, via primary normal and secondary inverse with aniline, to secondary inverse with weakly basic anilines. The primary normal and secondary inverse DKIEs were rationalized by frontside attack involving hydrogen bonded, four-center-type TSf and backside attack involving in-line-type TSb, respectively.
Keywords
Phosphoryl transfer reaction; Anilinolysis; Y-Aryl ethyl isothiocyanophosphate; Deuterium kinetic isotope effect; Cross-interaction constant;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Poirier, R. A.; Wang, Y.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526.   DOI   ScienceOn
2 Yamata, H.; Ando, T.; Nagase, S.; Hanamura, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631.   DOI
3 Zhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826.   DOI
4 Crumpler, T. B.; Yoh, J. H. in Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
5 Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493.   DOI   ScienceOn
6 Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944.   DOI   ScienceOn
7 Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544.   DOI   ScienceOn
8 Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425.   DOI   ScienceOn
9 Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919.   DOI   ScienceOn
10 Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1939.   DOI   ScienceOn
11 Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 1879.   DOI   ScienceOn
12 Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717.   DOI   ScienceOn
13 Lee, I. Chem. Soc. Rev. 1990, 9, 317.
14 Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
15 Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.   DOI   ScienceOn
16 Ritchie, C. D. Solute-Solvent Interactions, Coetzee, J. F.; Ritchie, C. D. ed., Marcel Dekker, New York, 1969, Chapter 4.
17 Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45.   DOI
18 Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
19 Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780.   DOI   ScienceOn
20 Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.   DOI
21 Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan, New York, 1992; p 735.
22 Williams, A. In Concerted Organic and Bio-organic Mechanisms; CRS Press: Boca Raton, 2000; Chapter 7.
23 Ruff, A.; Csizmadia, I. G. In Organic Reactions Equilibria, Kinetics and Mechanism; Elsevier, Amsterdam, Netherlands, 1994; Chapter 7.
24 Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874.   DOI   ScienceOn
25 Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995.   DOI   ScienceOn
26 Oh, H. K.; Lee, J. M.; Lee, H. W.; Lee, I. Int. J. Chem. Kinet. 2004, 36, 434.   DOI   ScienceOn
27 Oh, H. K.; Park, J. E.; Lee, H. W. Bull. Korean Chem Soc. 2004, 25, 1041.   DOI   ScienceOn
28 Castro, E. A.; Angel, P. M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571.   DOI   ScienceOn
29 Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2002, 67, 4494.   DOI   ScienceOn
30 Castro, E. A.; Aliaga, M.; Campodonico, P.; Santos, J. G. J. Org. Chem. 2002, 67, 8911.   DOI   ScienceOn
31 Humeres, E.; Debacher, N. A.; Sierra, M. M. D.; Franco, J. D.; Shutz, A. J. Org. Chem. 1998, 63, 1598.   DOI   ScienceOn
32 Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
33 Barnes, J. A.; Williams, I. H. J. Chem. Soc. Chem. Commun. 1993, 1286.
34 Lee, I. Chem. Soc. Rev. 1995, 24, 223.   DOI   ScienceOn
35 Marlier, J. F. Acc. Chem. Res. 2001, 34, 283.   DOI   ScienceOn
36 Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217.   DOI
37 Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736.   DOI   ScienceOn
38 Gronert, S.; Fagin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330.   DOI   ScienceOn