• 제목/요약/키워드: bond angle

검색결과 194건 처리시간 0.03초

동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구 (Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure)

  • 고성규;최창호
    • 한국지반공학회논문집
    • /
    • 제27권9호
    • /
    • pp.67-76
    • /
    • 2011
  • 동토지역 말뚝기초의 지지력은 말뚝과 토사의 접촉면에서 작용하는 동착강도에 지배된다. 말뚝주변 토사 내 간극수의 동결로 인해 발현되는 동착강도는 동토지반 기초설계에 있어 가장 주요한 설계정수로 고려되고 있다. 지난 50년간 동착강도에 대한 연구가 다각도로 수행되어 왔으나, 대부분 동결온도와 지중온도를 고정조건으로 그 영향력을 고려하지 않은 채 토사종류, 말뚝종류, 재하속도 등의 영향인자를 분석하기 위한 목적으로 수행되었다. 본 연구에서는 동결온도와 마찰면에 작용하는 수직구속응력을 주요 변수로 적용하고, 토사종류, 말뚝종류, 재하속도 등은 고정조건으로 적용하여 직접전단방식의 동착강도 측정실험을 수행하였다. 실험재료로는 표면 가공이 용이하여 거칠기를 정밀하게 조절할 수 있는 알루미늄 모형과 주문진표준사를 활용하였다. 실험은 상온(> $0^{\circ}C$), $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, $-10^{\circ}C$의 동결온도및 1atm, 2atm, 3atm의 수직구속응력 조건에서 수행되었으며, 그 결과를 바탕으로 동결온도와 수직구속응력이 동착강도에 미치는 영향을 분석하였다. 전반적으로 동착강도는 동결온도가 낮아질수록, 혹은 수직구속응력이 커질수록 증가하는 경향을 보였으며, 특히 단위온도차에 따른 동착강도의 증가율이 1)급증하는 구간과 2)점진적으로 감소하는 구간을 뚜렷하게 나타내며 변화하는 특성을 보였다. 또한, 동결온도의 저하에 따라 동착강도의 변화를 지배하는 요소가 마찰각에서 부착력으로 변화하며 수렴구간을 형성하는 경향을 나타냈다.

Olefin Separation Performances and Coordination Behaviors of Facilitated Transport Membranes Based on Poly(styrene-b-isoprene-b-styrene)/Silver Salt Complexes

  • Lee, Dong-Hoon;Kang, Yong-Soo;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.104-109
    • /
    • 2009
  • Solid-state facilitated, olefin transport membranes were prepared by complexation of poly(styrene-b-iso-prene-b-styrene) (SIS) block copolymer and silver salt. Facilitated olefin transport was not observed up to a silver mole fraction of 0.14, representing a threshold concentration, above which transport increased almost linearly with increasing silver salt concentration. This was because firstly the silver ions were selectively coordinated with the C=C bonds of PI blocks up to a silver mole fraction of 0.20, and secondly the coordinative interaction of the silver ions with the aliphatic C=C bond was stronger than that with the aromatic C=C bond, as confirmed by FT-Raman spectroscopy. Small angle X-ray scattering (SAXS) analysis showed that the cylindrical morphology of the neat SIS block copolymer was changed to a disordered structure at low silver concentrations ($0.01{\sim}0.02$). However, at intermediate silver concentrations ($0.15{\sim}0.20$), disordered-ordered structural changes occurred and finally returned to a disordered structure again at higher silver concentrations (>0.33). These results demonstrated that the facilitated olefin transport of SIS/silver salt complex membrancs was significantly affected by their coordinative interactions and nano-structural morphology.

Toluene-4-sulfonic Acid 4-Allyl-2,6-dimethoxy-phenyl Ester

  • 최규용;한병희;강성권;성창근;강상욱;서일환
    • 한국결정학회지
    • /
    • 제15권1호
    • /
    • pp.1-4
    • /
    • 2004
  • 上記 題目의 化合物, $C_{18}H_{20}O_5S$은 한 對非稱 單位內에 한 個의 分子를 가지고 對稱中心室間群 $P\={1}$로 結晶化 되었다. sulfonate 群內ml S 原子는 O와 C 原子들로 이루워진 四面體 環境을 維特하고 있으며, S-O 二重結合 平均 길이는 1.420(2) ${\AA}$이며 S-O 單一結合 길이는 1.598(2) ${\AA}$이고 S-C 結合 길이는 1.742(3) ${\AA}$이다. C(7)-S-O(3)-C(8) 의 비틀림 角은 100.3(2)$^{\circ}$이며, 두 個의 six-membered rings의 二面角은 42.73(20)$^{\circ}$이다.

Simulation of Ultrasonic Stress During Impact Phase in Wire Bonding

  • Mayer, Michael
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.7-11
    • /
    • 2013
  • As thermosonic ball bonding is developed for more and more advanced applications in the electronic packaging industry, the control of process stresses induced on the integrated circuits becomes more important. If Cu bonding wire is used instead of Au wire, larger ultrasonic levels are common during bonding. For advanced microchips the use of Cu based wire is risky because the ultrasonic stresses can cause chip damage. This risk needs to be managed by e.g. the use of ultrasound during the impact stage of the ball on the pad ("pre-bleed") as it can reduce the strain hardening effect, which leads to a softer deformed ball that can be bonded with less ultrasound. To find the best profiles of ultrasound during impact, a numerical model is reported for ultrasonic bonding with capillary dynamics combined with a geometrical model describing ball deformation based on volume conservation and stress balance. This leads to an efficient procedure of ball bond modelling bypassing plasticity and contact pairs. The ultrasonic force and average stress at the bond zone are extracted from the numerical experiments for a $50{\mu}m$ diameter free air ball deformed by a capillary with a hole diameter of $35{\mu}m$ at the tip, a chamfer diameter of $51{\mu}m$, a chamfer angle of $90^{\circ}$, and a face angle of $1^{\circ}$. An upper limit of the ultrasonic amplitude during impact is derived below which the ultrasonic shear stress at the interface is not higher than 120 MPa, which can be recommended for low stress bonding.

Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK)

  • Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권6호
    • /
    • pp.408-414
    • /
    • 2018
  • PURPOSE. This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS. Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with $50{\mu}m$ $Al_2O_3$ particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling ($5^{\circ}C$ to $55^{\circ}C$ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS. The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION. The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구 (The effect of retention grooves in Acrylic resin tooth denture base bond)

  • 김부섭
    • 대한치과기공학회지
    • /
    • 제9권1호
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF

CaO.MgO.$2 SiO_2-Al_2O_3$계의 고용체의 결정구조 (Structure Refinements of Solid Solutions in the System CaO.MgO.2 $2 SiO_2-Al_2O_3$)

  • 안영필;김복희
    • 한국세라믹학회지
    • /
    • 제23권5호
    • /
    • pp.25-34
    • /
    • 1986
  • This study was to refined the crystal structure of solid solution to determine the position and amount of Al in diopside and to relate crystal structure changes and properties of solid solution. Single crystals of the solid solution in the system CaO.MgO.$2 SiO_2-Al_2O_3$ were made from the melt with slow cooling and used to refine the structure. The following were obtained. 1. Tetrahedra rotated around axis parallel to the direction which the angle 03-03-03 became small. 2. Tetrahedron became large and regular. Average T-O bond distance increased 0.53 percent. 3. M1 octahedron became small and average M1-O bond distance decreased 1.1 percent. 4, M2 polyhedron became small and average M2-O bond distance decreased 0.37 percent Polythedron was affected not so much compared with any cation site. 5. Distance between metal ions distances between T and oxygens which were coordinated with M2 and meighboring tetrahedron distances between M2 and oxygens which coordinated with M1 and M2 were not changed almost. 6. $Al^{3+}$ substituted 4Mg^{2+}$ and $Si^{4+}$

  • PDF

탄소주입 실리콘 산화막 위에 성장한 투명전극 ZnO 박막의 광학적 특성 (Optical Properties of Transparent Electrode ZnO Thin Film Grown on Carbon Doped Silicon Oxide Film)

  • 오데레사
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.13-16
    • /
    • 2012
  • Zinc oxide (ZnO) films were deposited by an RF magnetron sputtering system with the RF power of 200W and 300W and flow rate of oxygen gases of 20 and 30 sccm, in order to research the growth of ZnO on carbon doped silicon oxide (SiOC) thin film. The reflectance of SiOC film on Si film deposited by the sputtering decreased with increasing the oxygen flow rate in the range of long wavelength. In comparison between ZnO/Si and ZnO/SiOC/Si thin film, the reflectance of ZnO/SiOC/Si film was inversed that of ZnO/Si film in the rage of 200~1000 nm. The transmittance of ZnO film increased with increasing the oxygen gas flow rate because of the transition from conduction band to oxygen interstitial band due to the oxygen interstitial (Oi) sites. The low reflectance and the high transmittance of ZnO film was suitable properties to use for the front electrode in the display or solar cell.

Temperature Effect on the Configurational Properties of an n-Decane Chain in Solution

  • Oh, In-Joon;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권4호
    • /
    • pp.162-167
    • /
    • 1984
  • Equilibrium and dynamical behaviors of an n-alkane poymer (decane) in solution have been investigated by a molecuar dynamics simulation method. The polymer is assumed to be a chain of elements $(CH_2)$ interconnected by bonds having a fixed bond length and bond angle, but esch bond of the polymer is allowed to execute hindered internal rotation. The calculation explicitly considers the molecular naturer of solvent by including the intermolecular interactions between slovent-solvent molecules and chain element-solvent molecule. We present the results of calculations on (1) equilibrium properties (the solvent molecule-chain element pair correlation function, chain element-chain element pair correlation function, the mean square end-to-end distance and the mean square radius of gyration of the polymer) and (2) dynamic properties (four different autocorrelation functions, namely, the autocorrelation functions for the end-to-end distance and the radius of gyration, and the velocity autocorrelation functions for the center of mass and the end point of the chain). We found that the physical properties of the polymer chain depends sensitively on temperature. Comparison of the present work with other authors' results is also presented.

Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method

  • Kim, Dong-Kyu;An, Kay-Hyeok;Bang, Yun Hyuk;Kwac, Lee-Ku;Oh, Sang-Yub;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.32-39
    • /
    • 2016
  • In this work, we studied the effects of electrochemical oxidation treatments of carbon fibers (CFs) on interfacial adhesion between CF and epoxy resin with various current densities. The surface morphologies and properties of the CFs before and after electrochemical-oxidation-treatment were characterized using field emission scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and single-fiber contact angle. The mechanical interfacial shear strength of the CFs/epoxy matrix composites was investigated by using a micro-bond method. From the results, electrochemical oxidation treatment introduced oxygen functional groups and increased roughness on the fiber surface. The mechanical interfacial adhesion strength also showed higher values than that of an untreated CF-reinforced composite.