DOI QR코드

DOI QR Code

Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure

동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구

  • Ko, Sung-Gyu (University of Science and Technology) ;
  • Choi, Chang-Ho (Korea Institute of Construction Technology, University of Science and Technology)
  • 고성규 (과학기술연합대학원대학교) ;
  • 최창호 (한국건설기술연구원, 과학기술연합대학원대학교)
  • Received : 2011.06.23
  • Accepted : 2011.09.20
  • Published : 2011.09.30

Abstract

Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. Adfreeze bond strength is considered to be the most important design parameter for foundations in cold region. Many studies in last 50 years have been conducted to analyze characteristics of adfreeze bond strength. However, most studies have been performed under constant temperature and normal stress conditions in order to analyze affecting factors like soil type, pile material, loading speed, etc. In this study, both freezing temperature and normal stress acting on pile surface were considered to be primary factors affecting adfreeze bond strength, while other factors such as soil type, pile material and loading speed were predefined. Direct shear box was used to measure adfreeze bond strength between Joomoonjin sand and aluminium because it is easy to work for various roughness. Test was performed with temperatures of > $0^{\circ}C$, $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$ and vertical confining pressures of 1atm, 2atm, and 3atm. Based on the test results, the effects of temperature and vertical stress on adfreeze bond strength were analyzed. The test results showed that adfreeze bond strength increases with decreased temperature and increased vertical stress. It was also noted that two types of distinct sections exist, owing to the rate of increase of adfreeze bond strength along the change of freezing temperature: 1)rapidly increasing section and 2)gradually decreasing section. In addition, the results showed that a main factor affecting adfreeze bond strength switches from friction angle to adhesion as freezing temperature decreases.

동토지역 말뚝기초의 지지력은 말뚝과 토사의 접촉면에서 작용하는 동착강도에 지배된다. 말뚝주변 토사 내 간극수의 동결로 인해 발현되는 동착강도는 동토지반 기초설계에 있어 가장 주요한 설계정수로 고려되고 있다. 지난 50년간 동착강도에 대한 연구가 다각도로 수행되어 왔으나, 대부분 동결온도와 지중온도를 고정조건으로 그 영향력을 고려하지 않은 채 토사종류, 말뚝종류, 재하속도 등의 영향인자를 분석하기 위한 목적으로 수행되었다. 본 연구에서는 동결온도와 마찰면에 작용하는 수직구속응력을 주요 변수로 적용하고, 토사종류, 말뚝종류, 재하속도 등은 고정조건으로 적용하여 직접전단방식의 동착강도 측정실험을 수행하였다. 실험재료로는 표면 가공이 용이하여 거칠기를 정밀하게 조절할 수 있는 알루미늄 모형과 주문진표준사를 활용하였다. 실험은 상온(> $0^{\circ}C$), $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, $-10^{\circ}C$의 동결온도및 1atm, 2atm, 3atm의 수직구속응력 조건에서 수행되었으며, 그 결과를 바탕으로 동결온도와 수직구속응력이 동착강도에 미치는 영향을 분석하였다. 전반적으로 동착강도는 동결온도가 낮아질수록, 혹은 수직구속응력이 커질수록 증가하는 경향을 보였으며, 특히 단위온도차에 따른 동착강도의 증가율이 1)급증하는 구간과 2)점진적으로 감소하는 구간을 뚜렷하게 나타내며 변화하는 특성을 보였다. 또한, 동결온도의 저하에 따라 동착강도의 변화를 지배하는 요소가 마찰각에서 부착력으로 변화하며 수렴구간을 형성하는 경향을 나타냈다.

Keywords

References

  1. 김종열, 최용환, 정자영, 강권수 (2000), "직접전단시험 형태에 따른 주문진 표준사의 전단정수 고찰", 대한토목학회 학술발표회 논문집, 제2권, pp.439-442.
  2. 吉田 光則, 大市 貴志, 山岸 暢, 金野 克美, 後町 光夫, 平野 徹, 藤野 和夫, 堀口 薫, 水野悠紀子, 山岡 勝, 近藤 孝, 浅井 規夫, 佐竹 正治 (1993), "着雪氷防止技術に関する研究", 北海道立工業試験場報告, No.292. pp.13-22.
  3. Assali, I. F. (1994), Thermal Analysis and earing Capacity of Piles Embedded in Frozen Soils, Thesis for Master Degree, University of Windsor, Ontario, Canada.
  4. Bowles, J. E. (1996), Foundation Analysis and Design, 5th ed., McGraw-Hill.
  5. Davis, T. N. (2001), Permafrost: A Guide to Frozen Ground in Transition, Fairbanks, Alaska, University of Alaska Press.
  6. Esch, D. C. (2004), Thermal Analysis, Construction, and Monitoring Methods for Frozen Ground, The Technical Council on Cold Regions Engineering, Virginia: American Society of Civil Engineering.
  7. Freitag, D. R. and McFadden, T. (1997), Introduction to Cold Regions Engineering, New York: ASCE Press.
  8. Kim, Y-C., Nam, M. S., Hong, S-S. (2007), "Ground characteristics in the antarctic and adfreeze force on pile foundations", Proc. of Int. Conf. on Tampere, Finland.
  9. Ladanyi, B. and Theriault, A. (1990), "A study of some factors affecting the adfreeze bond if piles in permafrost", Proc. of Geotechnical Engineering Congress, GSP 27 ASCE, Vol.1, pp.213-24.
  10. Oura, H., Usuki, H., and Takada, Y. (1960), "On adfreezing force of soil", Low Temperature Science.
  11. Parameswaran, V. R. (1978), "Adfreeze strength of frozen sand to model piles", Canadian Geotechnical Journal, Vol.15, No.4, pp.494-500. https://doi.org/10.1139/t78-053
  12. Scarr, K. L., Mokwa, R. L. (2008), Axial Capacity of Piles Founded in Permafrost: A Case Study on The Applicability of Modern Pile Design in Remote Mongolia, Project Report, BioRegions International, Bozeman, Montana.
  13. Terashima, T., Kawai, T., Furuya, A., Narita, K., Usami, N., Saeki, H. (1999), "Experimental study on adfreeze bond strength between ice and pile structure", Proc. of 9th International Offshore and Polar Engineering Conference, Vol.2, pp.549-556.

Cited by

  1. 인공신경망을 활용한 동착강도 예측 vol.27, pp.11, 2011, https://doi.org/10.7843/kgs.2011.27.11.071
  2. 동결된 화강풍화토와 알루미늄판 접촉면에서 발현되는 동착강도 측정 연구 vol.14, pp.12, 2013, https://doi.org/10.14481/jkges.2013.14.12.023
  3. Experimental study of the frozen soil-structure interface shear strength deterioration mechanism during thawing vol.14, pp.23, 2021, https://doi.org/10.1007/s12517-021-08673-0