Browse > Article
http://dx.doi.org/10.5714/CL.2016.19.032

Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method  

Kim, Dong-Kyu (R&D Division, Korea Institute of Carbon Convergence Technology)
An, Kay-Hyeok (R&D Division, Korea Institute of Carbon Convergence Technology)
Bang, Yun Hyuk (Hyosung R&DB Labs)
Kwac, Lee-Ku (Department of Carbon Fusion Engineering, Jeonju University)
Oh, Sang-Yub (R&D Division, Korea Institute of Carbon Convergence Technology)
Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
Publication Information
Carbon letters / v.19, no., 2016 , pp. 32-39 More about this Journal
Abstract
In this work, we studied the effects of electrochemical oxidation treatments of carbon fibers (CFs) on interfacial adhesion between CF and epoxy resin with various current densities. The surface morphologies and properties of the CFs before and after electrochemical-oxidation-treatment were characterized using field emission scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and single-fiber contact angle. The mechanical interfacial shear strength of the CFs/epoxy matrix composites was investigated by using a micro-bond method. From the results, electrochemical oxidation treatment introduced oxygen functional groups and increased roughness on the fiber surface. The mechanical interfacial adhesion strength also showed higher values than that of an untreated CF-reinforced composite.
Keywords
carbon fibers; epoxy; electrochemical oxidation; surface properties; interfacial shear strength;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Zhandarov S, Mäder E. Characterization of fiber/matrix interface strength: applicability of different test, approaches and parameters. Compos Sci Technol, 65, 149 (2005). http://dx.doi.org/10.1016/j.compscitech.2004.07.003.   DOI
2 Tsuda T, Ogasawara T, Deng F, Takeda N. Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Compos Sci Technol, 71, 1295 (2011). http://dx.doi.org/10.1016/j.compscitech.2011.04.014.   DOI
3 Domnanovich A, Peterlik H, Kromp K. Determination of interface parameters for carbon/carbon composites by the fibre-bundle pull-out test. Compos Sci Technol, 56, 1017 (1996). http://dx.doi.org/10.1016/0266-3538(96)00060-7.   DOI
4 Zhandarov S, Mäder E. An alternative method of determining the local interfacial shear strength from force-displacement curves in the pull-out and microbond test. Int J Adhes Adhes, 55, 37 (2014). http://dx.doi.org/10.1016/j.ijadhadh.2014.07.006.   DOI
5 Miller B, Muri P, Rebenfeld L. A microbond method for determination of the shear strength of a fiber/resin interface. Comps Sci Technol, 28, 17 (1987). http://dx.doi.org/10.1016/0266-3538(87)90059-5.   DOI
6 Liu WB, Zhang S, Hao LF, Jiao WC, Yang F, Li XF, Wang RG. Properties of carbon fiber sized with poly(phthalazinone ether ketone) resin. J Appl Polym Sci, 128, 3702 (2013). http://dx.doi.org/10.1002/app.38605.   DOI
7 Wang H, Wang H, Li W, Ren D, Yu Y. An improved microbond test method for determination of the interfacial shear strength between carbon fibers and epoxy resin. Polym Test, 32, 1460 (2013). http://dx.doi.org/10.1016/j.polymertesting.2013.09.017.   DOI
8 Liu B, Liu Z, Wang X, Zhang G, Long S, Yang J. Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polym Test, 32, 724 (2013). http://dx.doi.org/10.1016/j.polymertesting.2013.03.020.   DOI
9 Wilhelmy L. Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Annalen der Physik und Chemie, 195, 177 (1863). http://dx.doi.org/10.1002/andp.18631950602.   DOI
10 Habal A, Singh D. Comparison of Wilhelmy plate and Sessile drop methods to rank moisture damage susceptibility of asphalt: aggregates combinations. Constr Build Mater, 113, 351 (2016). http://dx.doi.org/10.1016/j.conbuildmat.2016.03.060.   DOI
11 Fowkes FM. Attractive forces at interfaces. Ind Eng Chem, 56, 40 (1964). http://dx.doi.org/10.1021/ie50660a008.   DOI
12 Barraza HJ, Hwa MJ, Blakley K, O'Rear EA, Grady BP. Wetting behavior of elastomer-modified glass fibers. Langmuir, 17, 5288(2001). http://dx.doi.org/10.1021/la010207l.   DOI
13 Kim HI, Choi WK, Oh SY, Seo MK, Park SJ, An KH, Lee YS, Kim BJ. Effects of oxyfluorination on surface and mechanical properties of carbon fiber-reinforced polarized-polypropylene matrix composites. J Nanosci Nanotechnol, 14, 9097 (2014). http://dx.doi.org/10.1166/jnn.2014.10095.   DOI
14 Park JM, Kim DS, Kong JW, Kim M, Kim W, Park IS. Interfacial adhesion and microfailure modes of electrodeposited carbon fiber/epoxy-PEI composites by microdroplet and surface wettabilitytests. J Colloid Interface Sci, 249, 62 (2002). http://dx.doi.org/10.1006/jcis.2002.8252.   DOI
15 Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett, 3, 1107 (2003). http://dx.doi.org/10.1021/nl0342489.   DOI
16 Liu Z, Jones FR, Zhai Z, Feng L. Interfacial adhesion of polyamide 66 fibres to an aqueous polyurethane-acrylic hybrid polymer adhesive. J Adhes, 90, 310 (2014). http://dx.doi.org/10.1080/00218464.2013.795115.   DOI
17 Lv M, Zheng F, Wang Q, Wang T, Liang Y. Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment. Tribol Int, 92, 246 (2015). http://dx.doi.org/10.1016/j.triboint.2015.06.004.   DOI
18 Choi WK, Kim HI, Kang SJ, Lee YS, Han JH, Kim BJ. Mechanical interfacial adhesion of carbon fibers-reinforced polarized-polypropylene matrix composites: effects of silane coupling agents. Carbon Lett, 17, 79 (2016). http://dx.doi.org/10.5714/cl.2016.17.1.079.   DOI
19 Diaz A, Guizar-Sicairos M, Poeppel A, Menzel A, Bunk O. Characterization of carbon fibers using X-ray phase nanotomography. Carbon, 67, 98 (2014). http://dx.doi.org/10.1016/j.carbon.2013.09.066.   DOI
20 Yu Q, Chen P, Wang L. Degradation in mechanical and physical properties of carbon fiber/bismaleimide composite subjected to proton irradiation in a space environment. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At, 298, 42 (2013). http://dx.doi.org/10.1016/j.nimb.2013.01.007.   DOI
21 Yang KS, Kim BH, Yoon SH. Pitch based carbon fibers for automotive body and electrodes. Carbon Lett, 15, 162 (2014). http://dx.doi.org/10.5714/cl.2014.15.3.162.   DOI
22 Jin FL, Park SJ. Preparation and characterization of carbon fiber-reinforcedthermosetting composites: a review. Carbon Lett, 16, 67(2015). http://dx.doi.org/10.5714/cl.2015.16.2.067.   DOI
23 Shin HK, Park M, Kang PH, Choi HS, Park SJ. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J Ind Eng Chem, 20, 3789 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.080.   DOI
24 Liu Y, Zhang X, Song C, Zhang Y, Fang Y, Yang B, Wang X. An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites. Mater Des, 88, 810 (2015). http://dx.doi.org/10.1016/j.matdes.2015.09.100.   DOI
25 Han SH, Oh HJ, Lee HC, Kim SS. The effect of post-processing of carbon fibers on the mechanical properties of epoxy-based composites. Compos Part B: Eng, 45, 172 (2013). http://dx.doi.org/10.1016/j.compositesb.2012.05.022.   DOI
26 Zvetkov VL, Djoumaliisky S, Simeonova-Ivanova E. The non-isothermal DSC kinetics of polyethylene tereftalate-epoxy compatible blends. Thermochim Acta, 553, 16, (2013). http://dx.doi.org/10.1016/j.tca.2012.11.026.   DOI
27 Wang C, Ji X, Roy A, Silberschmidt VV, Chen Z. Shear strength and fracture toughness of carbon fibre/epoxy interface: effect of surface treatment. Mater Des, 85, 800 (2015). http://dx.doi.org/10.1016/j.matdes.2015.07.104.   DOI
28 Yuan H, Wang C, Zhang S, Lin X. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite. Appl Surf Sci, 259, 288 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.07.034.   DOI
29 Zhang G, Sun S, Yang D, Dodelet JP, Sacher E. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon, 46, 196 (2008). http://dx.doi.org/10.1016/j.carbon.2007.11.002.   DOI
30 Gulyás J, Földes E, Lázár A, Pukánszky B. Electrochemical oxidation of carbon fibres: surface chemistry and adhesion. Comps Part A: Appl Sci Manuf, 32, 353 (2001). http://dx.doi.org/10.1016/s1359-835x(00)00123-8.   DOI
31 Fukunaga A, Ueda S, Nagumo M. Anodic surface oxidation mechanisms of PAN-based and pitch-based carbon fibres. J Mater Sci, 34, 2851 (1999). http://dx.doi.org/10.1023/a:1004679200908.   DOI
32 Han W, Choi WK, An KH, Kim HG, Kang SJ, Kim BJ. Effects of crack resistance properties of ozone-treated carbon fibers-reinforced nylon-6 matrix composites. Appl Chem Eng, 24, 363(2013).
33 Liu J, Tian Y, Chen Y, Liang J. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution. Appl Surf Sci, 256, 6199 (2010). http://dx.doi.org/10.1016/j.apsusc.2010.03.141.   DOI
34 Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng: A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129.   DOI
35 Park OK, Kim WY, Kim SM, You NH, Jeong Y, Lee HS, Ku BC. Effect of oxygen plasma treatment on the mechanical properties of carbon nanotube fibers. Mater Lett, 156, 17 (2015). http://dx.doi.org/10.1016/j.matlet.2015.04.141.   DOI
36 Lee H, Ohsawa I, Takahashi J. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties. Appl Surf Sci, 328, 241 (2015). http://dx.doi.org/10.1016/j.apsusc.2014.12.012.   DOI
37 Li Z, Wang J, Tong Y, Xu L. Anodic oxidation on structural evolution and tensile properties of polyacrylonitrile based carbon fibers with different surface morphology. J Mater Sci Technol, 28, 1123(2012). http://dx.doi.org/10.1016/s1005-0302(12)60181-9.   DOI
38 Qian X, Wang X, Ouyang Q, Chen Y, Yan Q. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation. Appl Surf Sci, 259, 238 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.07.025.   DOI
39 Tripathi D, Jones FR. Single fibre fragmentation test for assessing adhesion in fibre reinforced composites. J Mater Sci, 33, 1 (1998).
40 Zhao FM, Takeda N. Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part Ι: experiment results. Compos Part A: Appl Sci Manuf, 31, 1203 (2000). http://dx.doi.org/10.1016/s1359-835x(00)00085-3.   DOI