• 제목/요약/키워드: boiling

Search Result 2,194, Processing Time 0.029 seconds

Pressure Drop in Two-Phase Flow Boiling of R134a, R123 and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.70-78
    • /
    • 2004
  • An experimental study on the pressure drop during flow boiling for pure refrigerants Rl34a and R123, and their mixture was carried out in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6㎫ and in the ranges of heat flux 5-50㎾/$m^2$, vapor quality 0-100 percent and mass velocity of 150-600 kg/$m^2$s. Generally, the two-phase frictional multiplier is used to predict the frictional pressure drop during the two-phase flow boiling. The obtained results have been compared to the existing various correlations for the two-phase multiplier. Also, the frictional pressure drop was compared to a few available correlations; The Lockhart-Martinelli correlation considerally overpredicted the frictional pressure drop data for mixture as well as pure components in the entire mass velocity ranges employed in the present study, while the Chisholm correlation underpredicted the present data. The Friedel correlation was found to satisfactorily correlate the frictional pressure drop data except for a low quality region.

A Study on The Tracking Resistance and Mechanical strength of Epoxy Composites due to Boiling Absorption (비등에 따른 에폭시 복합체의 내트래킹성과 기계적강도에 관한 연구)

  • 김경민;김탁용;이덕진;강태오;홍진웅;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.165-168
    • /
    • 2000
  • This paper presents the tracking resistance and mechanical strength due to boiling absorption of epoxy resin. The single network structure specimen(E series) formed of epoxy alone and interpenetrating polymer network(IPN) structure specimen(EM series) which epoxy resin was taken as first network and methacrylic acid resin as second network were manufactured. As adding $SiO^2$ filler classified by o[phr], 50[phr] and 100[phr] to those specimens, six kinds of specimens were manufactured and boiled in water during 2, 4, 8, 16, 32 and 64[hours]. As a result, it was confirmed that the tracking breakdown time of E series showed a abrupt decrease with boiling time increasing, but that of EM series was decreasing smoothly. Also, it was verified that the degrading rates of mechanical strength was lowerd according to improvement of adhension strength in case of EM series.

  • PDF

Study on the characteristics of nucleate boiling heat transfer with changing of surface roughness (표면거칠기의 변화에 따른 핵비등열전달의 특성에 관한 연구)

  • 김춘식;정대인;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.64-78
    • /
    • 1983
  • In nucleate boiling, bubbles are created by the expansion of entrapped gas or vapor at small cavities in the surface of heat transfer. Namely, surface roughness is the important factor of heat transfer. This paper deals with the characteristics of boiling curve according to surface roughness. Freon-113 is used as the experimental fluid. The results are as follows; 1. In the case of the same as "q=C$\Delta$T$^{n}$ ", the lower numberical index "n", the larger heat transfer coefficient and the lower wall superheat "$\Delta$T" is obtained for the rougher surface. 2. In the working of every kind of heat transfer sruface with boiling, improvement of capabilities of heat transfer can be devised by adding suitable roughness on the heat transfer surface. 3. When the metal nets of moderate mesh number are established, the capabilities of heat transfer can be improved in evaporation of liquid in vessels. But in the case that the sucession of bubbles in checked by using the nets which are too tight, the generation of bubbles union decreases critical heat flux. decreases critical heat flux.

  • PDF

Pool Boiling Heat Transfer in Annuli with Closed Bottom

  • Kang, Myeong-Gie;Han, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.165-175
    • /
    • 2002
  • Effects of gap sizes (3.9-44.3 mm) of vertical annuli on nucleate pool boiling heat transfer of water at atmospheric pressure have been obtained experimentally. Through the study, tubes of the closed bottom have been investigated and results are compared with those of a single unconfined tube. According to the results, the annular condition gives much increase in heat transfer coefficient at moderate heat fluxes. The increase is much enhanced 3s the gap size decreases. At the same tube wall superheat (about 3.1 K) the heat transfer coefficient for the least gap size (i.e., 3.9 mm) is more than three times greater than that of the unconfined tube. However, deterioration of heat transfer occurs at high heat flux for confined boiling.

A preliminary study on material effects of critical heat flux for downward-facing flow boiling

  • Wang, Kai;Li, Chun-Yen;Uesugi, Kotaro;Erkan, Nejdet;Okamoto, Koji
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2839-2846
    • /
    • 2021
  • In this study, experiments of downward-facing flow boiling were conducted to investigate material effects on CHF. Experiments were conducted using aluminum, copper, and carbon steel. It was found that different materials had different CHFs. Aluminum has the biggest CHF while copper has the lowest CHF for each mass flux. After experiment, surface wettability increased and surface became rougher, which was probably due to the oxidation process during nucleate boiling. The CHF difference is likely to be related to the surface wettability, roughness and thermal effusivity, which influences the bubble behavior and in turn affects CHF. Further studies are needed to determine which factor is dominant.

Effect of nanoparticle material for heat transfer enhancement (열전달 향상을 위한 나노물질 코팅재료의 영향에 대한 연구)

  • Jeon, Yong-Han;Kim, Nam-Jin
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • Nucleate boiling heat transfer is one of the most important phenomenon in the various industries. Especially, critical heat flux (CHF) refers to the upper limit of the pool boiling heat transfer region. Therefore, many researchers have found that CHF can be significantly increased by adding very small amounts of nanoparticles. In this study, the CHF and heat transfer coefficient were tested under the pool boiling state using copper and multi wall carbon nanotube nanoparticles. The results showed that two different types of nanoparticles deposited on the surface of two specimens made of the same material increased the heat flux in the nanoparticles with high conductivity, and there was no difference in the critical heat flux when the same material nanoparticles were deposited on the two different specimen surfaces.

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

A Study on Boiling Heat Transfer from Circular Single Fin (단일 원형휜에서의 비등열전달에 관한 연구)

  • Seoh J. I.;Yim J. S;Lee J. H.;Park M. H.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.3
    • /
    • pp.18-30
    • /
    • 1982
  • The heat transfer process with boiling on a fin cannot be treated in a conventional manner of assuming a constant heat transfer coefficient. This report proposes a simplified method for determining fin performance. The heat transfer coefficients in boiling region is approximated by n ty power function of superheat. The results yield the temperature gradient as a function of superheat, fin width, and thermal conductivity of the fin. Computed results for water boiling on fin compare favorably with those obtained from a small-increment numerical solution.

  • PDF

Effect of Injection Pressure on the Flash Boiling Spray from Simple Orifice Nozzle (인젝터 압력이 단공노즐 감압비등 분무에 미치는 영향)

  • Lee, Hyunchang;Cha, Hyunwoo;Kang, Donghyeon
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Flash boiling occurs in a couple of modern engineering systems and understanding its mechanism is important. In this experimental study, discharge coefficient of flash boiling spray from simple orifice nozzle was measured, and backlight imaging was acquired at injection pressure to 6.0 bar and temperature to 163℃ for the purpose. Pressurized water by pump was used for working fluid and was heated by electric heater and ejected through simple orifice nozzle diameter of 0.5 mm. High speed camera with long distance microscope was used for backlight imaging in two FoV having magnification of 3.3 and 0.64. The decrease of discharge coefficient according to degree of superheating and evolution of flash boiling spray imaged at various pressure and temperature were explained by the pressure field inside the injector.