DOI QR코드

DOI QR Code

A preliminary study on material effects of critical heat flux for downward-facing flow boiling

  • Wang, Kai (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo) ;
  • Li, Chun-Yen (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo) ;
  • Uesugi, Kotaro (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo) ;
  • Erkan, Nejdet (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo) ;
  • Okamoto, Koji (Nuclear Professional School, School of Engineering, The University of Tokyo)
  • 투고 : 2020.05.03
  • 심사 : 2021.03.26
  • 발행 : 2021.09.25

초록

In this study, experiments of downward-facing flow boiling were conducted to investigate material effects on CHF. Experiments were conducted using aluminum, copper, and carbon steel. It was found that different materials had different CHFs. Aluminum has the biggest CHF while copper has the lowest CHF for each mass flux. After experiment, surface wettability increased and surface became rougher, which was probably due to the oxidation process during nucleate boiling. The CHF difference is likely to be related to the surface wettability, roughness and thermal effusivity, which influences the bubble behavior and in turn affects CHF. Further studies are needed to determine which factor is dominant.

키워드

과제정보

This work was supported by the Japan Grant-in-Aid for Scientific Research (B) (Grand No. 19H02645) and the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (Grand No. 1081782).

참고문헌

  1. C.M. Patil, S.G. Kandlikar, Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels, Int. J. Heat Mass Tran. 79 (2014) 816-828. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.063
  2. T. Wu, P.S. Lee, J. Mathew, S.R. Lu, Experimental study of ageing effect in pool boiling heat transfer. 20th electronics packaging Technology conference (EPTC), IEEE (2018) 477-484.
  3. N.I. Kolev, How accurately can we predict nucleate boiling? Exp. Therm. Fluid Sci. 10 (3) (1995) 370-378. https://doi.org/10.1016/0894-1777(94)00097-R
  4. B.R. Sehgal, Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology, second ed., Elsevier, San Diego, 2012.
  5. C.Y. Lee, T.H. Chun, W. Kee In, Critical heat flux of oxidized zircaloy surface in saturated water pool boiling, J. Nucl. Sci. Technol. 52 (4) (2015) 596-606.
  6. S.G. Kandlikar, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Tran. 123 (2001) 1071-1079. https://doi.org/10.1115/1.1409265
  7. K. Wang, N. Erkan, H. Gong, K. Okamoto, Effects of carbon steel surface oxidation on critical heat flux in downward-face pool boiling, Int. J. Heat Mass Tran. 136 (2019) 470-485. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.020
  8. K. Wang, N. Erkan, K. Okamoto, A study on the effect of oxidation on critical heat flux in flow boiling with downward-faced carbon steel, Int. J. Heat Mass Tran. 147 (2020) 118966. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118966
  9. H. O'Hanley, C. Coyle, J. Buongiorno, T. McKrell, L.-W. Hu, M. Rubner, R. Cohen, Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux, Appl. Phys. Lett. 103 (2013), 024102. https://doi.org/10.1063/1.4813450
  10. J. Kim, S. Jun, R. Laksnarain, S.M. You, Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability, Int. J. Heat Mass Tran. 101 (2016) 992-1002. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.067
  11. R. Braun, Warmeubergang beim Blasensieden an der AuBenseite von geschmirgelten und sandgestrahlten Rohren aus Kupfer, Messing und Edelstahl, Doctor dissertation, University Fridericiana Karlsruhe, 1992.
  12. X. Zhou, K. Bier, Influence of the heat conduction properties of the wall material and of the wall thickness on pool boiling heat transfer, in: EUROTHERM Seminar No. 48: Pool Boiling 2, Paderborn, Germany, 1996.
  13. U. Magrini, E. Nannei, On the influence of the thickness and thermal properties of heating walls on the heat transfer coefficients in nucleate pool boiling, J. Trans ASME Heat Transfer (1975) 173-178.
  14. V.A. Grigoriev, V.V. Klimenko, Y.M. Pavlov, E.V. Ametistov, Influence of Some Heating Surface Properties on the Critical Heat Flux in Cryogenic Liquids Boiling, Begel House Inc, 1978.
  15. J.W. Westwater, J.J. Hwalek, M.E. Irving, Suggested standard method for obtaining boiling curves by quenching, Ind. Eng. Chem. Fundam. 25 (4) (1986) 685-692. https://doi.org/10.1021/i100024a034
  16. Y. Mei, Y. Shao, S. Gong, Y. Zhu, H. Gu, Effects of surface orientation and heater material on heat transfer coefficient and critical heat flux of nucleate boiling, Int. J. Heat Mass Tran. 121 (2018) 632-640. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.020
  17. C. Bombardieri, C. Manfletti, Influence of wall material on nucleate pool boiling of liquid nitrogen, Int. J. Heat Mass Tran. 94 (2016) 1-8. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.049
  18. J. Lee, S.H. Chang, An experimental study on CHF in pool boiling system with SA508 test heater under atmospheric pressure, Nucl. Eng. Des. 250 (2012) 720-724. https://doi.org/10.1016/j.nucengdes.2012.05.024
  19. H.M. Park, Y.H. Jeong, S. Heo, Effect of heater material and coolant additives on CHF for a downward facing curved surface, Nucl. Eng. Des. 278 (2014) 344-351. https://doi.org/10.1016/j.nucengdes.2014.07.019
  20. D.H. Kam, Y.J. Choi, Y.H. Jeong, CHF experiment with downward-facing carbon and stainless steel plates under pressurized conditions, Int. J. Heat Mass Tran. 125 (2018) 670-680. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.026
  21. D.H. Kam, Y.J. Choi, Y.H. Jeong, H.C. No, Heat transfer performance of downward-facing carbon and stainless steel surfaces, Int. Commun. Heat Mass Tran. 113 (2020) 104503. https://doi.org/10.1016/j.icheatmasstransfer.2020.104503
  22. L. Liao, R. Bao, Z. Liu, Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water, Heat Mass Tran. 44 (2008) 1447-1453. https://doi.org/10.1007/s00231-008-0384-6
  23. M.S. El-Genk, A.F. Ali, Enhanced nucleate boiling on copper micro-porous surfaces, Int. J. Multiphas. Flow 36 (2010) 780-792. https://doi.org/10.1016/j.ijmultiphaseflow.2010.06.003
  24. K. Wang, H. Gong, L. Wang, N. Erkan, K. Okamoto, Effects of a porous honeycomb structure on critical heat flux in downward-facing saturated pool boiling, Appl. Therm. Eng. 166 (2020) 115036.
  25. I. Golobic, A.E. Bergles, Effects of heater-side factors on the saturated pool boiling critical heat flux, Exp. Therm. Fluid Sci. 15 (1) (1997) 43-51. https://doi.org/10.1016/S0894-1777(96)00170-7
  26. R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci. 1 (1) (1988) 3-17. https://doi.org/10.1016/0894-1777(88)90043-X
  27. Y. Katto, C. Kurata, Critical heat flux of saturated convective boiling on uniformly heated plates in a parallel flow, Int. J. Multiphas. Flow 6 (6) (1980) 575-582. https://doi.org/10.1016/0301-9322(80)90052-X
  28. L. Wang, A.R. Khan, N. Erkan, H. Gong, K. Okamoto, Critical heat flux enhancement on a downward face using porous honeycomb plate in saturated flow boiling, Int. J. Heat Mass Tran. 109 (2017) 454-461. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.113
  29. D.H. Kam, Y.J. Choi, Y.H. Jeong, Critical heat flux on downward-facing carbon steel flat plates under atmospheric condition, Exp. Therm. Fluid Sci. 90 (2018) 22-27. https://doi.org/10.1016/j.expthermflusci.2017.08.028
  30. H.S. Ahn, C. Lee, H. Kim, et al., Pool boiling CHF enhancement by micro/ nanoscale modification of zircaloy-4 surface, Nucl. Eng. Des. 240 (10) (2010) 3350-3360. https://doi.org/10.1016/j.nucengdes.2010.07.006
  31. R.F. Gaertner, Photographic study of nucleate pool boiling on a horizontal surface, J. Heat Tran. 87 (1965) 17-27. https://doi.org/10.1115/1.3689038
  32. M.C. Vlachou, J.S. Lioumbas, K. David, D. Chasapis, T.D. Karapantsios, Effect of channel height and mass flux on highly subcooled horizontal flow boiling, Exp. Therm. Fluid Sci. 83 (2017) 157-168. https://doi.org/10.1016/j.expthermflusci.2017.01.001
  33. H.H. Son, U. Jeong, G.H. Seo, S.J. Kim, Oxidation effect on the pool boiling critical heat flux of the carbon steel substrates, Int. J. Heat Mass Tran. 93 (2016) 1008-1019. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.047
  34. K. Wang, N. Erkan, K. Okamoto, Oxidation effect of copper on the downwardfacing flow boiling CHF under atmospheric condition, Int. J. Heat Mass Tran. 156 (2020) 119866. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119866
  35. https://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness.
  36. W.T. Ji, P.F. Zhao, C.Y. Zhao, J. Ding, W.Q. Tao, Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability, Nanoscale Microscale Thermophys. Eng. (2018) 296-323. https://doi.org/10.1080/15567265.2018.1497110
  37. N. Kim, H.H. Son, S.J. Kim, Oxidation effect on pool boiling critical heat flux enhancement of Cr-coated surface for accident-tolerant fuel cladding application, Int. J. Heat Mass Tran. 144 (2019) 118655. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118655
  38. J. Kim, S. Jun, J. Lee, S.M. You, Effect of surface roughness on pool boiling heat transfer of water on a superhydrophilic aluminum surface, J. Heat Transfer 139 (1) (2017) 101501. https://doi.org/10.1115/1.4036599
  39. J. Min, Webb, Long-Term Wetting and Corrosion Characteristics of Hot Water Treated Aluminum and Copper Fin Stocks, Int. J. Refrig 25 (8) (2002) 1054-1061. https://doi.org/10.1016/S0140-7007(02)00010-5