Browse > Article
http://dx.doi.org/10.1016/j.net.2021.03.024

A preliminary study on material effects of critical heat flux for downward-facing flow boiling  

Wang, Kai (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo)
Li, Chun-Yen (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo)
Uesugi, Kotaro (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo)
Erkan, Nejdet (Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo)
Okamoto, Koji (Nuclear Professional School, School of Engineering, The University of Tokyo)
Publication Information
Nuclear Engineering and Technology / v.53, no.9, 2021 , pp. 2839-2846 More about this Journal
Abstract
In this study, experiments of downward-facing flow boiling were conducted to investigate material effects on CHF. Experiments were conducted using aluminum, copper, and carbon steel. It was found that different materials had different CHFs. Aluminum has the biggest CHF while copper has the lowest CHF for each mass flux. After experiment, surface wettability increased and surface became rougher, which was probably due to the oxidation process during nucleate boiling. The CHF difference is likely to be related to the surface wettability, roughness and thermal effusivity, which influences the bubble behavior and in turn affects CHF. Further studies are needed to determine which factor is dominant.
Keywords
Critical heat flux; Flow boiling; Bubble behavior; Wettability; Surface roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Braun, Warmeubergang beim Blasensieden an der AuBenseite von geschmirgelten und sandgestrahlten Rohren aus Kupfer, Messing und Edelstahl, Doctor dissertation, University Fridericiana Karlsruhe, 1992.
2 X. Zhou, K. Bier, Influence of the heat conduction properties of the wall material and of the wall thickness on pool boiling heat transfer, in: EUROTHERM Seminar No. 48: Pool Boiling 2, Paderborn, Germany, 1996.
3 V.A. Grigoriev, V.V. Klimenko, Y.M. Pavlov, E.V. Ametistov, Influence of Some Heating Surface Properties on the Critical Heat Flux in Cryogenic Liquids Boiling, Begel House Inc, 1978.
4 C. Bombardieri, C. Manfletti, Influence of wall material on nucleate pool boiling of liquid nitrogen, Int. J. Heat Mass Tran. 94 (2016) 1-8.   DOI
5 J. Lee, S.H. Chang, An experimental study on CHF in pool boiling system with SA508 test heater under atmospheric pressure, Nucl. Eng. Des. 250 (2012) 720-724.   DOI
6 D.H. Kam, Y.J. Choi, Y.H. Jeong, CHF experiment with downward-facing carbon and stainless steel plates under pressurized conditions, Int. J. Heat Mass Tran. 125 (2018) 670-680.   DOI
7 D.H. Kam, Y.J. Choi, Y.H. Jeong, H.C. No, Heat transfer performance of downward-facing carbon and stainless steel surfaces, Int. Commun. Heat Mass Tran. 113 (2020) 104503.   DOI
8 M.S. El-Genk, A.F. Ali, Enhanced nucleate boiling on copper micro-porous surfaces, Int. J. Multiphas. Flow 36 (2010) 780-792.   DOI
9 K. Wang, H. Gong, L. Wang, N. Erkan, K. Okamoto, Effects of a porous honeycomb structure on critical heat flux in downward-facing saturated pool boiling, Appl. Therm. Eng. 166 (2020) 115036.
10 R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci. 1 (1) (1988) 3-17.   DOI
11 https://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness.
12 Y. Katto, C. Kurata, Critical heat flux of saturated convective boiling on uniformly heated plates in a parallel flow, Int. J. Multiphas. Flow 6 (6) (1980) 575-582.   DOI
13 H.S. Ahn, C. Lee, H. Kim, et al., Pool boiling CHF enhancement by micro/ nanoscale modification of zircaloy-4 surface, Nucl. Eng. Des. 240 (10) (2010) 3350-3360.   DOI
14 M.C. Vlachou, J.S. Lioumbas, K. David, D. Chasapis, T.D. Karapantsios, Effect of channel height and mass flux on highly subcooled horizontal flow boiling, Exp. Therm. Fluid Sci. 83 (2017) 157-168.   DOI
15 D.H. Kam, Y.J. Choi, Y.H. Jeong, Critical heat flux on downward-facing carbon steel flat plates under atmospheric condition, Exp. Therm. Fluid Sci. 90 (2018) 22-27.   DOI
16 H. O'Hanley, C. Coyle, J. Buongiorno, T. McKrell, L.-W. Hu, M. Rubner, R. Cohen, Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux, Appl. Phys. Lett. 103 (2013), 024102.   DOI
17 J.W. Westwater, J.J. Hwalek, M.E. Irving, Suggested standard method for obtaining boiling curves by quenching, Ind. Eng. Chem. Fundam. 25 (4) (1986) 685-692.   DOI
18 J. Kim, S. Jun, J. Lee, S.M. You, Effect of surface roughness on pool boiling heat transfer of water on a superhydrophilic aluminum surface, J. Heat Transfer 139 (1) (2017) 101501.   DOI
19 R.F. Gaertner, Photographic study of nucleate pool boiling on a horizontal surface, J. Heat Tran. 87 (1965) 17-27.   DOI
20 H.H. Son, U. Jeong, G.H. Seo, S.J. Kim, Oxidation effect on the pool boiling critical heat flux of the carbon steel substrates, Int. J. Heat Mass Tran. 93 (2016) 1008-1019.   DOI
21 W.T. Ji, P.F. Zhao, C.Y. Zhao, J. Ding, W.Q. Tao, Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability, Nanoscale Microscale Thermophys. Eng. (2018) 296-323.   DOI
22 J. Min, Webb, Long-Term Wetting and Corrosion Characteristics of Hot Water Treated Aluminum and Copper Fin Stocks, Int. J. Refrig 25 (8) (2002) 1054-1061.   DOI
23 C.Y. Lee, T.H. Chun, W. Kee In, Critical heat flux of oxidized zircaloy surface in saturated water pool boiling, J. Nucl. Sci. Technol. 52 (4) (2015) 596-606.
24 C.M. Patil, S.G. Kandlikar, Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels, Int. J. Heat Mass Tran. 79 (2014) 816-828.   DOI
25 T. Wu, P.S. Lee, J. Mathew, S.R. Lu, Experimental study of ageing effect in pool boiling heat transfer. 20th electronics packaging Technology conference (EPTC), IEEE (2018) 477-484.
26 N.I. Kolev, How accurately can we predict nucleate boiling? Exp. Therm. Fluid Sci. 10 (3) (1995) 370-378.   DOI
27 S.G. Kandlikar, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Tran. 123 (2001) 1071-1079.   DOI
28 K. Wang, N. Erkan, K. Okamoto, A study on the effect of oxidation on critical heat flux in flow boiling with downward-faced carbon steel, Int. J. Heat Mass Tran. 147 (2020) 118966.   DOI
29 N. Kim, H.H. Son, S.J. Kim, Oxidation effect on pool boiling critical heat flux enhancement of Cr-coated surface for accident-tolerant fuel cladding application, Int. J. Heat Mass Tran. 144 (2019) 118655.   DOI
30 K. Wang, N. Erkan, K. Okamoto, Oxidation effect of copper on the downwardfacing flow boiling CHF under atmospheric condition, Int. J. Heat Mass Tran. 156 (2020) 119866.   DOI
31 Y. Mei, Y. Shao, S. Gong, Y. Zhu, H. Gu, Effects of surface orientation and heater material on heat transfer coefficient and critical heat flux of nucleate boiling, Int. J. Heat Mass Tran. 121 (2018) 632-640.   DOI
32 B.R. Sehgal, Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology, second ed., Elsevier, San Diego, 2012.
33 K. Wang, N. Erkan, H. Gong, K. Okamoto, Effects of carbon steel surface oxidation on critical heat flux in downward-face pool boiling, Int. J. Heat Mass Tran. 136 (2019) 470-485.   DOI
34 U. Magrini, E. Nannei, On the influence of the thickness and thermal properties of heating walls on the heat transfer coefficients in nucleate pool boiling, J. Trans ASME Heat Transfer (1975) 173-178.
35 H.M. Park, Y.H. Jeong, S. Heo, Effect of heater material and coolant additives on CHF for a downward facing curved surface, Nucl. Eng. Des. 278 (2014) 344-351.   DOI
36 I. Golobic, A.E. Bergles, Effects of heater-side factors on the saturated pool boiling critical heat flux, Exp. Therm. Fluid Sci. 15 (1) (1997) 43-51.   DOI
37 J. Kim, S. Jun, R. Laksnarain, S.M. You, Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability, Int. J. Heat Mass Tran. 101 (2016) 992-1002.   DOI
38 L. Wang, A.R. Khan, N. Erkan, H. Gong, K. Okamoto, Critical heat flux enhancement on a downward face using porous honeycomb plate in saturated flow boiling, Int. J. Heat Mass Tran. 109 (2017) 454-461.   DOI
39 L. Liao, R. Bao, Z. Liu, Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water, Heat Mass Tran. 44 (2008) 1447-1453.   DOI