• Title/Summary/Keyword: boiler efficiency

Search Result 280, Processing Time 0.022 seconds

A Comparative Experiment on the Emission Gas Characteristics of Domestic RDF (국내산(國內産) RDF의 배출(排出)가스 특성(特性) 비교실험(比較實驗))

  • Park, Myung-Ho
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.46-51
    • /
    • 2007
  • This study aimed at developing high-efficiency RDF(refuse derived fuels) fuel in order to use RDF energy rationally and to recycle industrial product. As most studies in this area are concentrated in large combustion apparatuses such as kilns, but this study was focused on the small-sized heating systems, applying them directly to grate type boiler which has a heating capacity of $66{\sim}132m^2$. The different kinds of fuel are experimented including RDF. Coke and Waste Tire. First, for this, we experimented and analyzed RDF to see the change in its mass and heating value. Also, four kinds of exhaust gas are sampled by gas analyzer including CO, $CO_2$, NO and $NO_2$ at different temperature. As a result, the levels of CO concentration of RDF are higher than these of coke and waste tire. But, the levels of NO, $CO_2$ and $SO_2$ concentration of RDF and coke were lower then the levels when waste tire is burned.

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas (습식 배연탈황 시스템의 효율 향상을 위한 전산해석)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.

The development of full-scope replica simulator for variable supercritical pressure once-through fossil power plants (변압 관류형 초임계압 화력발전소 전범위 시뮬레이터 개발)

  • Lee, Jung-Kun;Ahn, Yeon-Shik;Jung, Hoon;Lee, Yong-Kwan;Han, Byoung-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.392-399
    • /
    • 1998
  • A full-scope replica type simulator whose MCR(main control room) has the same features and operation functions as MCR of the reference power plant has been developed for a fossil power plant. This simulator was developed with the model of Poryung Fossil Power Plant #3,4 which is the standard model of the Korean fossil power plant. It is the first localized simulator for the supercritical, variable boiler pressure type fossil power plant. The simulator provides various kinds of accidents which are in normal plant operation and thus enables operators to recover or reduce possible damages. To design and develop this kind of simulator, we need to integrate high technologies such as system analysis, plant operation and system integration of mechanics, physics, computer science. CASE(Computer Aided Software Engineering) tools were used to develop the dynamic model. This simulator will greatly contribute to the improvement of the safety and efficiency of the fossil power plant by implementing operator training. In this paper, the outline of software and hardware configuration and characteristics of the simulator are described, and the results of 30%, 50%, 75%, 100% load operation test will be discussed.

  • PDF

A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production (SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석)

  • BYUN, HYUN SEUNG;HAN, DANBEE;PARK, SEONGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

Effect of Initial Volume of Hard Water and Contact Time on the Reduction of Calcium Ion Concentration using High Voltage Impulse Technique (고전압 임펄스 기술을 활용한 경도 제거에서 경수의 초기부피와 인가시간이 칼슘이온 농도에 미치는 영향)

  • Cho, Seung-Yeon;Kim, Tae-Hui;Chang, In-Soung;Hong, Woong-ki;Lee, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1066-1071
    • /
    • 2017
  • Recently high voltage impulse (HVI) technique has been extensively studied for desalting processes to control the $CaCO_3$ scale formation in industrial water practices such as power plant, boiler, and heat exchange operations. Investigation of the operational parameters for the HVI is important, however, those had not been reported yet. In this study, the effect of initial feed volume and contact time on reduction of calcium ion concentration by the HVI technique was investigated. Initial feed volumes of artificial hard water which contained 100 mg/L of $Ca^{2+}$, were set to 1, 2, and 3 L respectively. After 24hr of HVI contact with 12kV, $Ca^{2+}$ ion was reduced to 50, 29 and 19 % of their initial concentration, indicating that calcium removal increased as initial feed volume decreased. This implies the applied HVI pulse energy per unit mass of calcium is important parameter determining overall desalting efficiency. A series of extended operations of HVI up to 30 days verified the long term stability of the HVI system. The calcium ion declined to 40 mg/L after 2~3 days, and further reduction of calcium was not achieved, indicating that optimum operation time could be 2~3 days under these experimental conditions. Consequently, it was confirmed that the important operational parameter of HVI technique is initial feed volume and contact time as well as the applied voltage that was already proven in the previous study.

A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition (탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구)

  • Moon, Seung-Hyun;Lee, Seung-Jae;Ryu, In-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.928-935
    • /
    • 2010
  • A bag filter system was partially burnt down during a trial run of waste wood incineration boiler. This brought about unburned hydrocarbon which caused a rapid deactivation of low temperature SCR catalyst set up in two stage after the bag filter. The deactivated catalyst was investigated in order to trace the origin by several characterization methods such as XRD, EDX, BET, TGA, SEM. The deactivated catalyst was regenerated by different methods such as acid washing, water washing in ultrasonication, and calcination treatment under air condition. It is found the calcination treatment under air condition at $450^{\circ}C$ for 2 hours to be the best regeneration method. The catalytic activity was measured in the form of 2 cm ${\times}$ 2 cm ${\times}$ 10 cm (catalyst weight 10 g) honeycomb type. A deNOx efficiency of the regenerated catalyst showed 100% at $180^{\circ}C$ which is the same level of fresh one.

Economic Evaluation of Glass Greenhouse Heating Solar Thermal System Applied with Seasonal Borehole Thermal Energy Storage System (BTES 방식의 계간축열 시스템을 적용한 유리온실의 난방용 태양열시스템의 경제성 평가)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.63-74
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a 1,320 m2 glass greenhouse was analyzed numerically, and the economic feasibility depending upon the number of boreholes was evaluated. For this study, the gardening 16th and 19th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And the heating load of the glass greenhouse selected was 1,147 GJ. BTES(Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The number of boreholes was selected from 25 to 150. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modelling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump and controller. As a result of the analysis, when the number of boreholes was from 25 to 50, the thermal efficiency of BTES system and the solar fraction was the highest. When the number of boreholes was from 25 to 50, it was analyzed that the payback period was from 5.2 years to 6.2 years. Therefore it was judged to be the number of boreholes of the proposed system was from 25 to 50, which is the most efficient and economical.

An Empirical Evaluation of Safety of the Common Vent Structure for Stationary Fuel Cell Systems (건물용 연료전지 복합배기구조 안전 실증평가)

  • LEE, EUN-KYUNG;LEE, JUNG-WOON;MOON, JONG-SAM;LEE, SEONG-HEE;SHIN, DONG-HUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.596-605
    • /
    • 2018
  • Interest in hydrogen, as an energy carrier, has been growing to solve the problems on shortage of fossile fuels and greenhouse gas. According to the standard KGS FU 551 for stationary fuel cell installation, the fuel cell system could be connected up to two common exhausts to one floor. depending on the required power for building or the installation environment in buildings, multiple fuel cell systems could be installed. Afterwards the number of perforations and flues could be decided. Hence, economic efficiency in significantly determined with respect to installation area and the number of fuel cell systems. In addition, the complexity of common vent structure for stationary fuel cell systems could be changed. In this paper, Verification experiments were conducted by connecting the common exhaust system to the fuel cell simulation system and the actual fuel cell system. Humidity and temperature were changed at ON/OFF, but no factors were found to affect performance or system malfunction. Exhaust emissions were also measured to obtain optimized values. We intend to expand the diffusion of stationary fuel cells by verifying safety of common exhaust structure.

Development of Korean UCS Architecture and Service Design for GCS Standardization (GCS 공통화를 위한 한국형 UCS 개발 및 서비스 설계)

  • Yoorim Choi;Sangyun Park;Chulhwan Kim;Gyeongrae Nam;So-Yeong Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.314-322
    • /
    • 2023
  • The use of unmanned aerial vehicles is rapidly increasing in order to effectively utilize limited manpower and minimize casualties on the battlefield. The requirements for ground control equipment vary depending on the operating concept and environment of the unmanned aerial system, but there are still common requirements. However, the lack of standardized system configurations to meet these common requirements makes it difficult to reuse common functions, leading to continuous acquisition costs. To solve this problem, this paper develops a Korean version of the UCS model using the UCS architecture. Furthermore, after designing elements related to service development not specified in the architecture (such as framework, communication middleware, service structure, etc.), we develop a Boilerplate to enhance developers' work efficiency based on this. The results of this study will serve as a foundation for effectively and economically carrying out the development of ground control equipment for unmanned aerial systems.

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.