• Title/Summary/Keyword: bm35

Search Result 192, Processing Time 0.031 seconds

Design of A 2.7-V MMIC SiGe HBT Up-converter and Variable Gain Amplifier for Cellular Band Applications (Cellular 주파수 대역 2.7-V MMIC SiGe HBT 상향 주파수 혼합기와 가변이득 증폭기의 설계)

  • 박성룡;김창우
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.146-149
    • /
    • 2000
  • SiGe HUT뜰 이용하여 Cellular 주파수 대역(824-849 MHz)에서 MMIC 상향 주파수 혼합기와 가변이득 증폭기를 설계하였다. 동작 전압은 2.7 V 이며, 이중평형 구조의 상향 주파수 혼합기는 12 dB의 변환이득, -0.6 dBm의 1dB 이득압축 출력전력, 30 dB 이상의 LO-RF 단자 격리도 특성, 1.25의 LO-VSWR. 1.34의 RF-VSWR을 가지며, 상호컨덕턴스형 가변이득 증폭기는 35 dB의 최대 선형이득, 13 dBm의 1dB 이득압축 출력전력, 42dB의 가변이득, 23dB의 3차 상호변조 교점 출력전력(OIP$_3$), 1.27의 입력 VSWR, 1.1의 출력 VSWR 특성을 보인다.

  • PDF

A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link

  • Park, Mun-Su;Hwang, Jun-Am
    • ETRI Journal
    • /
    • v.9 no.2
    • /
    • pp.24-35
    • /
    • 1987
  • A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link We calculated the transfer functions of optical channel components and formulated the optimum transfer function of optical receiver for optical transmission to show a design rule of fiber optical link for digital transmission. And we evaluated various causes of sensitivity degradation to determine the receiver specification. Also we fabricated and demonstrated a 565Mbit/s single mode fiber optic link, 27km, to show the practicality of designed fiber optic link. The output power of the transmitter was above -3dBm, and the sensitivity of the optical receiver was -37.8dBm which is the same value we expected. Also the dynamic range was more than 25dB.

  • PDF

A Initial Channel Estimation Method Based on Extensive Preamble Utilization in MB-OFDM UWB System (프리엠블 확장 사용 기반 MB-OFDM UWB용 채널 추정 방식)

  • Jeong, Jin-Doo;Jin, Yong-Sun;Chong, Jong-Wha
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • In this paper, we propose a method to improve the performance of initial channel estimation (CE) for the multiband-OFDM (MB-OFDM) UWB. The performance of the initial CE can be generally improved as increasing the number of the used preamble symbols. The MB-OFDM specification presents two CE symbols per band in preamble format. The performance of CE estimation with two CE symbols may be satisfied in relatively high sensitivity -77.5 and -72.5 dBm for 200 Mbps and 480 Mbps data rate, respectively, but can not be enough in the degraded 55 Mbps and 110 Mbps sensitivities such as -83.5 and -80.5 dBm, respectively. A method proposed in this paper achieves the performance improvement by extending CE estimation region to packet synchronization (PS) symbols and frame synchronization (FS) symbols including two CE symbols. This can improve the CE performance in the degraded SNR and increase the link-margin by reducing the error rate in physical-layer header. The link-margin improvement obtained by the proposed CE preamble can induce the decrease of error-rate in physical-layer header and increase of communication throughput. Simulation results for the proposed initial method show that the performance is improved by about 0.7 dB at 10-4 bit-error-rate using '4' symbols than initial method using only two CE symbols.

Design of Dual Band Wireless LAN Transmitter Using DGS (DGS를 이용한 이중대역 무선 랜 송신부 설계)

  • Kang Sung-Min;Choi Jae-Hong;Koo Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.75-80
    • /
    • 2006
  • This paper has proposed a novel dual band transmitter module which can be operating either as an amplifier or as a frequency multiplier according to the input frequency. A conventional dual band transmitter consists of separate amplifiers operating at each frequency band, but the proposed dual band module operates as an amplifier for the IEEE 802.11b/g signal, and as a frequency doubler for the IEEE 802.11a signal according to input frequency and bias voltage. In this paper, we have obtained sharp stop band characteristics by using microstrip DGS(Defected Ground Structure) to suppress the fundamental frequency of the frequency doubler as well as the second harmonic of the amplifier. From measurement result, second harmonic suppression is below -59dBc in the amplifier mode, and fundamental suppression is below -35dBc in the frequency doubler mode. And the designed module has 17.8dBm output P1dB at 2.4GHz and 10.1dBm power for 5.8GHz output, and the output power in the two modes are 0.8dB and 2.8dB larger than the module with ${\lambda}g/4$ reflector, respectively.

A Medium Power Single-Pole-Double-Throw MMIC Switch for IEEE 802.11a WLAN Applications (IEEE 802.11a 무선랜용 중간전력 SPDT 초고주차단일집적회로 스위치 제작 및 특성)

  • Mun JaeKyoung;Kim Haecheon;Park Chong-Ook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.965-970
    • /
    • 2005
  • In this paper, SPDT Tx/Rx MMIC switch applicable to IEEE 802.11a WLAN systems is designed and fabricated using a specific designed epitaxial layered pHEMT wafer and ETRI's $0.5{\mu}m$ pHEMT switch process. The SPDT switch exhibits a low insertion loss of 0.68dB, high isolation of 35.64dB, return loss of 13.4dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V. The comparison of the measured performances with commercial products based on the GaAs pHEMT technology for low voltage operating at ${\pm}$ 3V/0V shows that the return loss is somewhat inferior to the commercial products and insertion loss is compatible with each other however, isolation characteristics are much better than in conventional chips. Based on these performances, we can conclude that the developed SPDT switch MMIC has an enough potential for IEEE802.11a standard 5 GHz-band wireless LAN applications.

Group Delay Time Matched CMOS Microwave Frequency Doubler (군지연 시간 정합 CMOS 마이크로파 주파수 체배기)

  • Song, Kyung-Ju;Kim, Seung-Gyun;Choi, Heung-Jae;Jeong, Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.771-777
    • /
    • 2008
  • In this paper, a frequency doubler using modified time-delay technique is proposed. A voltage controlled delay line (VCDL) in the proposed frequency doubler compensates the group delay time mismatching between input and delayed signal. With the group delay time matching and waveform shaping using the adjustable Schmitt triggers, the unwanted fundamental component($f_0$) and the higher order harmonics such as third and fourth are diminished excellently. In result, only the doubled frequency component($2f_0$) appears dominantly at the output port. The frequency doubler is designed at 1.15 GHz of $f_0$ and fabricated with TSMC $0.18\;{\mu}m$ CMOS process. The measured output power at $2f_0$ is 2.67 dBm when the input power is 0 dBm. The obtained suppression ratio of $f_0,\;3f_0$, and $4f_0$ to $2f_0$ are 43.65, 38.65 and 35.59 dB, respectively.

Design of the RF Front-end for L1/L2 Dual-Band GPS Receiver (L1/L2 이중-밴드 GPS 수신기용 RF 전단부 설계)

  • Kim, Hyeon-Deok;Oh, Tae-Soo;Jeon, Jae-Wan;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1169-1176
    • /
    • 2010
  • The RF front-end for L1/L2 dual-band Global Positioning System(GPS) receiver is presented in this paper. The RF front-end(down-converter) using low IF architecture consists of a wideband low noise amplifier(LNA), a current mode logic(CML) frequency divider and a I/Q down-conversion mixer with a poly-phase filter for image rejection. The current bleeding technique is used in the LNA and mixer to obtain the high gain and solve the head-room problem. The common drain feedback is adopted for low noise amplifier to achieve the wideband input matching without inductors. The fabricated RF front-end using $0.18{\mu}m$ CMOS process shows a gain of 38 dB for L1 and 41 dB for L2 band. The measured IIP3 is -29 dBm in L1 band and -33 dBm in L2 band, The input return loss is less than -10 dB from 50 MHz to 3 GHz. The measured noise figure(NF) is 3.81 dB for L1 band and 3.71 dB for L2 band. The image rejection ratio is 36.5 dB. The chip size of RF front end is $1.2{\times}1.35mm^2$.

HF-Band Magnetic-Field Communication System Using Bias Switching Circuit of Class E Amplifier (E급 증폭기의 바이어스 스위칭 회로를 이용한 HF-대역 자기장 통신 시스템)

  • Son, Yong-Ho;Lee, June;Cho, Sang-Ho;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1087-1093
    • /
    • 2012
  • In this paper, we implemented a HF-band magnetic-field communication system consisting of an amplitude shift keying(ASK) transmitter, a pair of loop antennas, and an ASK receiver. Especially, we suggested a new ASK transmitter architecture, where a drain bias of class E amplifier is switched alternatively between two voltage levels with respect to input data. A maximum 5 W class E amplifier was designed using a low cost IRF510 power MOSFET at the frequency of 6.78 MHz. A measured sensitivity of the designed ASK receiver is -78 dBm, which consists of a log amplifier, a filter, and a comparator. Maximum communication range of magnetic-wave communication system with loop antennas was calculated using magnetic field equations in both near-field and far-field ranges. Also, in order to verify the calculated values, an indoor propagation loss was measured using a pair of loop antennas whose dimensions are $30{\times}30cm$. Maximum operating range is estimated about 35 m in case of transmitter's output power of 1 W and receiver sensitivity of -70 dBm, respectively. Finally, the communication field test using the designed ASK transmitter and receiver was successfully done at the distance of 5 m.

Dual-Band High-Efficiency Class-F Power Amplifier using Composite Right/Left-Handed Transmission Line (Composite Right/Left-Handed 전송 선로를 이용한 이중 대역 고효율 class-F 전력증폭기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.53-59
    • /
    • 2008
  • In this paper, a novel dual-band high-efficiency class-F power amplifier using the composite right/left-handed (CRLH) transmission lines (TLs) has been realized with one RF Si lateral diffusion metal-oxide-semiconductor field effect transistor (LDMOSFET). The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult in dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 880 MHz and 1920 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 880 MHz and 1920 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 79.536 % and 44.04 % at two operation frequencies, respectively.

Design of a 2.4GHz 2 stage Low Noise Amplifier for RF Front-End In a 0.35${\mu}{\textrm}{m}$ CMOS Technology

  • Kwon, Kisung;Hwang, Youngseung;Jung, Woong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.11-15
    • /
    • 2002
  • 3 V, 2.46GHz Low Noise Amplifier (LNA) have been designed for standard 0.35$\mu\textrm{m}$ CMOS process with one poly and four metal layers. This design includes on-chip biasing, matching network and multilayer spiral inductors. The single-ended amplifier provides a forward gain of 20.5dB with a noise figure 3.35dB, and an IIP3 of -6dBm while drawing 59mW total Power consumption

  • PDF