• Title/Summary/Keyword: blot

Search Result 3,789, Processing Time 0.031 seconds

Activity-guided Purification of N-benzyl-N-methyldecan-1-amine from Garlic and Its Antitumor Activity against CT-26 Colorectal Carcinoma in BALB/C Mice (활성추적분리법에 의해서 순수분리한 마늘 N-benzyl-N-methyldecan-1-amine이 CT-26 세포주 이식 BALB/C mice의 항암효과)

  • Seetharaman, Rajasekar;Choi, Seong Mi;Guo, Lu;Cui, Zheng Wei;Otgonbayar, Duuriimaa;Park, Ju Ha;Kwon, Young-Seok;Kwak, Jung Ho;Kwon, Young Hee;Min, Ji Hyun;Kang, Jum Soon;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1062-1070
    • /
    • 2019
  • A components of garlic (Allium sativum) have anti-proliferative effects against various types of cancer. We aimed to investigate the capacity of garlic compounds to anti-tumor on a various cancer cell lines. Fractionation of garlic extract, guided by antiproliferative activity against human gastric cancer (AGS) cells, has resulted in the isolation of N-benzyl-N-methyldecan-1-amine (NBNMA). We investigated the effect of newly isolated NBNMA from garlic cloves on the inhibition of the growth of CT-26, AGS, HepG2, HCT-116, MCF7, B16F10, and Sarcoma-180 cells for in vitro and CT-26 colon carcinoma cells in vivo. NBNMA exhibited an antiproliferative effect in CT-26 cells by apoptotic cell death. NBNMA exhibited down-regulation of anti-apoptotic Bcl-2 proteins and up-regulation of apoptotic Bad protein expression in western blot analyses. In addition, NBNMA meagre activated caspase 3 and caspase 9, initiator caspases of the extrinsic and intrinsic pathways of apoptosis. NBNMA treatment at a dose of 10 mg/kg for 21 days in experimental mice implanted with tumors resulted in significant reduction of the tumor weight (43%). NBNMA exhibited both in vitro and in vivo anticancer activity. These results indicate that NBNMA has promising potential to become a novel anticancer agent from garlic cloves for the treatment of colon carcinoma cancer.

Effects of 2-methoxy-1,4-naphthoquinone (MQ) on MCP-1 Induced THP-1 Migration (MCP-1에 의해 유도된 THP-1 유주에 미치는 2-methoxy-1,4-naphthoquinone (MQ)의 영향)

  • Kim, Si Hyun;Park, Bo Bin;Hong, Sung Eun;Ryu, Sung Ryul;Lee, Jang Ho;Kim, Sa Hyun;Lee, Pyeongjae;Cho, Eun-Kyung;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.245-251
    • /
    • 2019
  • This study examined the effects of 2-methoxy-1,4-naphthoquinone (MQ) on the monocyte chemoattractant protein-1 (MCP-1)-induced migration of monocytes, which is an important phenomenon for the body defense and immune response. MQ is a major component extracted from Impatiens balsamina leaves, which have been used for many years in Asian medicine for the treatment of a range of diseases and pain. The cytotoxicity of MQ began to appear at a concentration of $10{\mu}M$, and approximately 50% cytotoxicity was confirmed at $100{\mu}M$. The MCP-1 induced migration of the THP-1 monocyte cell line increased after MQ treatment in a dose dependent manner and the largest increase was observed at $0.1{\mu}M$. The level of cAMP expression decreased after a treatment with $0.1{\mu}M$ MQ. The phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2), a key signaling protein involved in the signaling pathway of C-C motif chemokine receptor 2 (CCR2), a receptor for MCP-1, was increased by the simultaneous treatment of $0.1{\mu}M$ MQ. These results show that MQ increases the MCP-1-induced migration of THP-1, decreases the level of cAMP expression, and increases the level of Erk1/2 phosphorylation.

Effect of Scytosiphon lomentaria Ethanol Extracts on Myostatin Activity and Zebrafish Obesity Induced by High Feeding (고리매(Scytosiphon lomentaria) 에탄올 추출물이 마이오스타틴 활성과 고 급식으로 유도된 비만 제브라피쉬에 미치는 영향)

  • Jung, Jun Gyo;Kim, Jae Hong;Kim, Jeong Hwan;Kim, Yong Soo;Jin, Deuk-Hee;Jin, Hyung-Joo
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.699-709
    • /
    • 2021
  • Muscle mass improvement through lifestyle modification has been shown to reduce the risk of metabolic syndrome. This study examined the capacity of ethanol extracts of Scytosiphon lomentaria (SLE) to suppress the bioactivity of myostatin, a potent negative regulator of skeletal muscle mass, as well as the effect of SLE treatment on metabolic homeostasis in obese zebrafish induced by high feeding. A total of 10 ㎍/ml SLE completely blocked myostatin (1 nM/ml) signaling in the pGL3-(CAGA)12 luciferase assay and suppressed myostatin-induced Smad2 phosphorylation in the Western blot analysis. In the zebrafish larvae analysis, the whole body glucose concentration of the high feeding control (HFC) group was significantly higher than that of the normal feeding control (NFC) group. However, the glucose levels of the high feeding group treated with 12.5 ug SLE and of the high feeding group treated with 18.75 ug SLE were similar to those of the NFC group. The mRNA expression level of the GLUT2 gene of the HFC group was significantly lower than that of the NFC group. SLE treatment restored the expression of the GLUT2 gene to a level that was close to that of the NFC group, indicating that SLE is capable of regulating glucose levels in zebrafish larvae. The current results highlight the potential of SLE as a natural MSTN inhibitor and supplement that can be used to facilitate the treatment of metabolic syndrome.

Antioxidant Activities and Whitening Effects of a Mixture of the Eco-friendly Materials Pinus koraiensis and Hibiscus cannabinus L. (친환경 소재 잣나무 목재와 케나프 줄기 혼합물의 항산화 및 미백효과)

  • Oh, Min-Jeong;Yeom, Hyeon-Ji;Chae, Jung-Woo;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.305-313
    • /
    • 2021
  • This study verified the antioxidant and whitening activities of a Pinus koraiensis extract (PK) and a Hibiscus cannabinus L. extract (HC), and further evaluated the interaction of the extract ingredients when mixed at a 1:1 ratio (PKHC). The electron-donating and ABTS+ radical scavenging activities of the PKHC extract at 1,000 ㎍/ml concentration were 93.7% and 94%, respectively, indicating a higher efficacy than achieved with either extract alone. Measurements of the tyrosinase the activities in response to PK, HC, and PKHC extracts at 1,000 ㎍/ml concentrations showed inhibitions of 40%, 27.5%, and 43%, respectively, confirming a higher efficacy of the mixture due to the synergistic action of the ingredients. The cell toxicity values in melanoma cells treated with PK, HC, and PKHC at 1,000 ㎍/ml concentration were 87.4%, 80.2%, and 98%, confirming a higher viability in cells treated with the mixture due to antagonism. The expression of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), tyrosinase-related protein-2 (TRP-2), and tyrosinase protein expression determined by Western blotting decreased by 53.9%, 64.8%, 67.3%, and 56.1%, respectively, when PKHC was administered at a concentration of 100 ㎍/ml. Reverse transcription-polymerase chain reaction (RT- PCR) results also showed that PKHC at a concentration of 100 ㎍/ml inhibited the mRNA expression of MITF, TRP-1, TRP-2, and tyrosinase mRNA by 54.4%, 64.9%, 66.6%, and 63.1%, respectively. Taken together, the data confirmed the antioxidant and whitening effect of the PKHC extract and verified the possibility that this extract mixture has great potential as a cosmetic ingredient.

Cytotoxic Effect and Protein Expression by Korean Regional Propolis on HeLa Ovarian Cancer Cell Line (HeLa 암세포주에 대한 국산 프로폴리스의 독성 효과 및 단백질 발현 변화)

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Kim, Se Gun;Bang, Kyung Won;Kim, Hyo Young;Choi, Hong Min;Moon, Hyo Jung
    • Journal of Apiculture
    • /
    • v.34 no.3
    • /
    • pp.245-254
    • /
    • 2019
  • We investigated the anti-tumor effects and molecular mechanism of Brazil, China and Korean regional propolis on HeLa ovarian cancer cell line. Each propolis extracts was prepared by ethanol extraction method. Cytotoxicity of propolis extracts was determinated by EZ-cytox cell viability assay. To necessity of anti-tumor effect and molecular mechanism of propolis, we must be adjusting propolis concentration. Due to 100 ㎍/mL of propolis extract were reduced cell viability to less than 50%, we adjusted all of propolis concentration to 100 ㎍/mL. By Western blotting analysis, we confirmed that anti-tumor mechanism of Brazil, China and Korea regional propolis has significantly difference. All of propolis was activated apoptosis related molecules such as PARP, caspase-3. However, cell proliferation signaling molecules including Akt1, ERK and Bcl-2 were reduced the protein expression level. Especially, the expression of tumor suppressor protein p53 was significantly increased in propolis-treated group such as Gyeonggi, Chungbuk, Chungnam, Jeonbuk, Gyeongnam and China. The phosphorylation of Bax which as apoptosis indicator was appeared in propolis-treated group such as Gyeonggi, Gangwon, Chungnam, Gyeongbuk, China. In this results showed that the regional propolis has completely different mechanism in anti-tumor. Thus, propolis extracts may be useful source of functional materials on anti-cancer and it will be able to choose the suitable propolis for cancer therapy by analyzing individual characteristics.

Resveratrol Ameliorates NMDA-induced Mitochondrial Injury by Enhanced Expression of Heme Oxygenase-1 in HT-22 Neuronal Cells (NMDA를 처리한 HT-22 신경세포에서 미토콘드리아 손상을 완화하는 레스베라트롤의 보호 효과와 헴 산화효소-1의 역할)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • N-methyl-D-aspartate (NMDA) receptors have received considerable attention regarding their involvement in glutamate-induced neuronal excitotoxicity. Resveratrol has been shown to exhibit neuroprotective effects against this kind of overactivation, but the underlying cellular mechanisms are not yet clearly understood. In this study, HT-22 neuronal cells were treated with NMDA in Mg2+-free buffer and subsequently used as an experimental model of glutamate excitotoxicity to elucidate the mechanisms of resveratrol-induced neuroprotection. We found that NMDA treatment causes a drop in MTT reduction ability, disrupts inside-negative transmembrane potential of mitochondria, depletes cellular ATP levels, and stimulates intracellular ROS production. Double fluorescence imaging studies demonstrated an increased formation of mitochondrial permeability transition (MPT) pores accompanied by apoptotic cell death, while cobalt protoporphyrin and bilirubin showed protective effects against NMDA-induced mitochondrial injury. On the other hand, zinc protoporphyrin IX significantly attenuated the protective effects of resveratrol which was itself shown to enhance heme oxygenase-1 (HO-1) mRNA and protein expression levels. In cells transfected with HO-1 small interfering RNA, resveratrol failed to suppress the NMDA-induced effects on MTT reduction ability and MPT pore formation. The present study suggests that resveratrol may prevent mitochondrial injury in NMDA- treated HT-22 cells and that enhanced expression of HO-1 is involved in the underlying cellular mechanism.

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

Cell Migration and Wound Healing Activities of Recombinant Thymosin β-4 Expressed in Escherichia coli (재조합 Thymosin β-4의 세포이동능과 상처치유능)

  • Hong, Kyo-Chang;Choi, Yung Hyun;Kim, Gun-Do;Cha, Hee-Jae;Jeon, Sung-Jong;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2022
  • Thymosin β-4 (TB4) is a small peptide composed of 43 amino acids. To obtain sufficient biologically active mouse TB4 economically, we cloned and overexpressed this gene in an Escherichia coli system. With the isopropyl β-D-1-thiogalactopyranoside induction of the E. coli transformant, TB4 fusion protein with intein- and chitin-binding domain was successfully expressed in the soluble fraction within the E. coli cell. The TB4-intein - chitin-binding domain fusion protein was purified from the soluble fraction of E. coli cell lysate. The affinity chromatography with chitin beads and dithiothreitol-mediated intein self-cleavage reaction releases the TB4 peptide into the stripping solution. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis and Western blot analyses were used to confirm that the recombinant TB4 peptide was produced with the expected size of 5 kDa. We found that the recombinant TB4 stimulated cell migration in the transwell plate chamber assay. After 18 hr of the treatment of the recombinant TB4 with 1 ng/ml concentration, the migration of the HT1080 cell was increased by 20% compared with that of the chemically synthesized TB4. The recombinant TB4 was also observed to promote the healing of a wound area in C57BL/6 mice by as high as 35% compared with that of the chemically synthesized TB4. These results suggest that the recombinant TB4 has better biological activity for cell migration and wound healing than that of the chemically synthesized TB4 peptide.

Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2

  • Enkhtaivan, Enkhmend;Kim, Hyun Ji;Kim, Boram;Byun, Hyung Jung;Yu, Lu;Nguyen, Tuan Minh;Nguyen, Thi Ha;Do, Phuong Anh;Kim, Eun Ji;Kim, Kyung Sung;Huy, Hieu Phung;Rahman, Mostafizur;Jang, Ji Yun;Rho, Seung Bae;Lee, Ho;Kang, Gyeoung Jin;Park, Mi Kyung;Kim, Nan-Hyung;Choi, Chang Ick;Lee, Kyeong;Han, Hyo Kyung;Cho, Jungsook;Lee, Ai Young;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.203-211
    • /
    • 2022
  • Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.

Effect of Oil in Water Nanoemulsion Containing a Mixture of Lactic Acid and Gluconolactone for Skin Barrier Improvement (유산 및 글루코노락톤 혼합물을 함유하는 수중유형 나노에멀젼의 피부장벽개선 효과)

  • Ji-Hye Hong;Young Duck Choi;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.905-914
    • /
    • 2023
  • To evaluate the effectiveness of the skin barrier improvement of lactic acid (LA) and gluconolactone (GL), the expression of filaggrin, loricrin, hyaluronic acid (HA), hyaluronan syhthase-2 (HAS2), and aquaporine-3 (AQP3) in keratinocytes, and the moisture content and transepidermal water loss (TEWL) by clinical trials were evaluated. The expression levels of filaggrin and locricrin, which are the main factors affecting the proper functioning of skin barrier function, and HA, HAS2, and AQP3, which are skin moisturizing-related proteins measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The results showed that the expression levels of the factors that decreased by H2O2 treatment were significantly increased by LA, GL, and a mixture of LA and GL at the mRNA and protein levels (p<0.05). The nanoemulsion containing a mixture of LA and GL was prepared using the emulsion inversion method, and the average particle size was 299.9 ± 0.287 nm. After measuring the TEWL of nanoemulsion using Vapometer, it was found that TEWL significantly decreased by 15.53% and 26.73% after two weeks and four weeks of product use, respectively, compared to TEWL before product use (p<0.001). Similarly, the skin moisture content of the nanoemulsion significantly increased by 15.40% and 26.59% after two weeks and four weeks of product use, respectively, compared to skin moisture content before product use (p<0.001). Therefore, the skin barrier function and moisturizing effect of a mixture of LA and GL are shown by increasing the moisture content and decreasing the TEWL by increasing the expression of filaggrin, loricrin, HA, HAS2, and AQP3. This suggests the possibility for the development of functional cosmetic ingredients in the future.