Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.8.699

Effect of Scytosiphon lomentaria Ethanol Extracts on Myostatin Activity and Zebrafish Obesity Induced by High Feeding  

Jung, Jun Gyo (Department of Marine Molecular Bioscience, Gangneung-Wonju National University)
Kim, Jae Hong (Department of Marine Molecular Bioscience, Gangneung-Wonju National University)
Kim, Jeong Hwan (Department of Marine Molecular Bioscience, Gangneung-Wonju National University)
Kim, Yong Soo (Department of Human Nutrition, Food and Animal Sciences, University of Hawaii)
Jin, Deuk-Hee (Department of Marine Molecular Bioscience, Gangneung-Wonju National University)
Jin, Hyung-Joo (Department of Marine Molecular Bioscience, Gangneung-Wonju National University)
Publication Information
Journal of Life Science / v.31, no.8, 2021 , pp. 699-709 More about this Journal
Abstract
Muscle mass improvement through lifestyle modification has been shown to reduce the risk of metabolic syndrome. This study examined the capacity of ethanol extracts of Scytosiphon lomentaria (SLE) to suppress the bioactivity of myostatin, a potent negative regulator of skeletal muscle mass, as well as the effect of SLE treatment on metabolic homeostasis in obese zebrafish induced by high feeding. A total of 10 ㎍/ml SLE completely blocked myostatin (1 nM/ml) signaling in the pGL3-(CAGA)12 luciferase assay and suppressed myostatin-induced Smad2 phosphorylation in the Western blot analysis. In the zebrafish larvae analysis, the whole body glucose concentration of the high feeding control (HFC) group was significantly higher than that of the normal feeding control (NFC) group. However, the glucose levels of the high feeding group treated with 12.5 ug SLE and of the high feeding group treated with 18.75 ug SLE were similar to those of the NFC group. The mRNA expression level of the GLUT2 gene of the HFC group was significantly lower than that of the NFC group. SLE treatment restored the expression of the GLUT2 gene to a level that was close to that of the NFC group, indicating that SLE is capable of regulating glucose levels in zebrafish larvae. The current results highlight the potential of SLE as a natural MSTN inhibitor and supplement that can be used to facilitate the treatment of metabolic syndrome.
Keywords
Inhibitor; myostatin; muscle; obese zebrafish; Scytosiphon lomentaria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rocha, F., Dias, J., Engrola, S., Gavaia, P., Geurden, I., Dinis, M. T. and Panserat, S. 2014. Glucose overload in yolk has little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish (Danio rerio). J. Exp. Biol. 217, 1139-1149.   DOI
2 Xu, C., Wu, G., Zohar, Y. and Du, S. 2003. Analysis of myostatin gene structure, expression and function in zebrafish. J. Exp. Biol. 206, 4067-4079.   DOI
3 Cash, J. N., Angerman, E. B., Kattamuri, C., Nolan, K., Zhao, H., Sidis, Y., Keutmann, H. T. and Thompson, T. B. 2012. Structure of myostatin: follistatinlike 3: N-terminal domains of follistatin-type molecules exhibit alternate modes of binding. J. Biol. Chem. 287, 1043-1053.   DOI
4 Fuentes, E. N., Pino, K., Navarro, C., Delgado, I., Valdes, J. A. and Molina, A. 2013. Transient inactivation of myostatin induces muscle hypertrophy and overcompensatory growth in zebrafish via inactivation of the SMAD signaling pathway. J. Biotechnol. 168, 295-302.   DOI
5 Ostbye, T. K., Wetten, O. F., Tooming-Klunderud ,A., Jakobsen, K. S., Yafe, A., Etzioni, S., Moen, T. and Andersen, O. 2007. Myostatin (MSTN) gene duplications in atlantic salmon (Salmo salar): Evidence for different selective pressure on teleost MSTN-1 and-2. Gene 403, 159-169.   DOI
6 Grobet, L., Martin, L. R., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R. and Georges, M. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71-74.   DOI
7 Fanzani, A., Caonraads, V. M., Penna, F. and Martinet, W. 2012. Molecular and cellular mechanisms of skeletal muscle atrophy : an update. J. Cachexia Sarcomenia Muscle 3, 163-179.   DOI
8 Demirel, Z., Yilmaz-Koz, F. F., Karabay-Yavasoglu, U. N., Ozdemir, G. and Sukatar, A. 2009. Antimicrobial and antioxidant activity of brown algae from the aegean sea. J. Serb. Chem. Soc. 74, 619-628.   DOI
9 Elo, B., Villano, C. M., Govorko, D. and White, L. A. 2007. Larval zebrafish as a model for glucose metabolism: Expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J. Mol. Endocrinol. 38, 433-440.   DOI
10 Fang, L., Liang, X., Zhou, Y., Guo, X., He, Y., Yi, T., Li, L., Yuan, X. and Tao, Y. 2014. Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br. J. Nutr. 111, 808-818.   DOI
11 Grundy, S. M. 2008. Metabolic syndrome pandemic. Arterioscler Thromb. Vasc. Biol. 28, 629-636.   DOI
12 Grundy, S. M. 2016. Metabolic syndrome update. Trends Cardiovasc. Med. 26, 364-373.   DOI
13 Zhao, B., Wall, R. J. and Yang, J. 2005. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem. Biophys. Res. Commun. 337, 248-255.   DOI
14 Hallare, A., Nagel, K., Kohler, H-R. and Triebskorn, R. 2006. Comparative embryotoxicity and proteotxoicity of three carrier solvents to zebrafish (Danio rerio) embryos. Ecotoxicol. Environ. Saf. 63, 378-388.   DOI
15 Hasumura, T., Shimada, Y., Kuroyanagi, J., Nishimura, Y., Meguro, S. and Takema, Y. 2012. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish. Nutr. Metab. (Lond) 9, 1-7.   DOI
16 Ding, Y., Kim, S. H., Lee, J. J., Hong, J. T., Kim, E. A., Kang, D. H., Heo, S. J. and Lee, S. H. 2019. Anti-melanogenesis activity of Ecklonia cava extract cultured in tanks with magma seawater of Jeju Island. Algae 34, 177-185.   DOI
17 Zhao, C., Qiao, C., Tang, R., Jiang, J., Li, J., Martin, C. B., Bulaklak, K., Li, J., Wang, D. W. and Xiao, X. 2015. Overcoming insulin insufficiency by forced follistatin expression in β-cells of db/db mice. Mol. Ther. 23, 866-874.   DOI
18 Kuda, T., Tsunekawa, M., Hishi, T. and Araki, Y. 2005. Antioxidant properties of dried kayamo-nori, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem. 89, 617-622.   DOI
19 Kambadur, R., Sharma, M., Smith, T. P. and Bass, J. J. 1997. Mutations in myostatin (GDF8) in double-muscled belgian blue and piedmontese cattle. Genome Res. 7, 910-916.   DOI
20 Kim, S. C., Park, S. Y., Hyoun, J. H., Cho, H., Kang, J. H., Lee, Y. K., Park, D. B., Yoo, E. S. and Kang, H. K. 2004. The cytotoxicity of Scytosiphon lomentaria against HL-60 promyelocytic leukemia cells. Cancer Biother. Radiopharm. 19, 641-648.   DOI
21 Lee, S. J. 2004. Regulation of muscle mass by myostatin. Ann. Rev. Cell Dev. Biol. 20, 61-86.   DOI
22 Lee, S. B., Park, S. K. and Kim, Y. S. 2015. Production of bioactive chicken (Gallus gallus) follistatin-type proteins in E. coli. AMB Expr. 5, 142.
23 Maddison, L. A., Joest, K. E., Kammeyer, R. M. and Chen, W. 2015. Skeletal muscle insulin resistance in zebrafish induces alterations in beta-cell number and glucose tolerance in an age- and diet-dependent manner. Am. J. Physiol. Endocrinol. Metab. 308, E662-E669.   DOI
24 Kalyani, R. R., Corriere, M. and Ferrucci, L. 2014. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2, 819-829.   DOI
25 Manceau, M., Gros, J., Savage, K., Thome, V., McPherron, A., Paterson, B. and Marcelle, C. 2008. Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev. 22, 668-681.   DOI
26 McPherron, A. C. and Lee, S. J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 94, 12457-12461.   DOI
27 Narici, M. V. and Maffulli, N. 2010. Sarcopenia: Characteristics, mechanisms and functional significance. Br. Med. Bull. 95, 139-159.   DOI
28 Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J. and Kambadur, R. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275, 40235-40243.   DOI
29 Ponce, N. M. A., Flores, M. L., Pujol, C. A., Becerra, M. B., Navarro, D. A., Cordoba, O., Damonte, E. B. and Stortz, C. A. 2019. Fucoidans from the phaeophyta Scytosiphon lomentaria: Chemical analysis and antiviral activity of the galactofucan component. Carbohydrate Res. 478, 18-24.   DOI
30 Parng, C., Seng, W. L., Semino, C. and McGrath, P. 2002. Zebrafish: A preclinical model for drug screening. Assay Drug Dev. Technol. 1, 41-48.   DOI
31 Rocha, F., Dias, J., Engrola, S., Gavaia, P., Geurden, I., Dinis, M. T. and Panserat, S. 2015. Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: Effects of an acute glucose stimulus during late embryonic life. Br. J. Nutr. 113, 403-413.   DOI
32 Thorens, B., Sarkar, H. K., Kaback, H. R. and Lodish, H. F. 1988. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells. Cell 55, 281-290.   DOI
33 Seo, H. C., Saetre, B. O., Havik, B., Ellingsen, S. and Fjose, A. 1998. The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech. Dev. 70, 49-63.   DOI
34 Vascotto, S. G., Beckham, Y. and Kelly, G. M. 1997. The zebrafish's swim to fame as an experimental model in biology. Biochem. Cell Biol. 75, 479-485.   DOI
35 Bonaldo, P. and Sandri, M. 2013. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6, 25-39.   DOI
36 Xie, X. W., Liu, J. X., Hu, B. and Xiao, W. 2011. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis. PloS One 6, e24469.   DOI
37 Park, M. H., Kim, S., Cheon, J., Lee, J., Kim, B. K., Lee, S., Kong, C., Kim, Y. Y. and Kim, M. 2016. Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells. Nutr. Res. Pract. 10, 148-153.   DOI
38 Amali, A. A., Lin, C. J., Chen, Y., Wang, W. L., Gong, H. Y., Lee, C. Y., Ko, Y. L., Lu, J. K., Her, G. M., Chen, T. T. and Wu, J. L. 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev. Dyn. 229, 847-856.   DOI
39 Bowen, T. S., Schuler, G. and Adams, V. 2015. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle 6, 197-207.   DOI
40 Braun, T. and Gautel, M. 2011. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell. Biol. 12, 349-361.   DOI
41 Capiott, K .M., Antonioli, R., Kist, L. W., Bogo, M. R., Bonan, C. D. and Da Silva, R. S. 2014. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 171, 58-65.   DOI
42 Castillo, J., Crespo, D., Capilla, E., Diaz, M., Chauvigne, F., Cerda, J. and Planas, J. V. 2009. Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1570-R1581.   DOI