• Title/Summary/Keyword: blade(blade)

Search Result 3,671, Processing Time 0.03 seconds

Aerodynamic performance enhancement of cycloidal rotor according to blade pivot point movement and preset angle adjustment

  • Hwang, In-Seong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This paper describes aerodynamic performance enhancement of cycloidal rotor according to the blade pivot point movement and the blade preset angle adjustment. Cycloidal blade system which consists of several blades rotating about an axis in parallel direction and changing its pitch angle periodically, is a propulsion mechanism of a new concept vertical take off and landing aircraft, cyclocopter. Based on the designed geometry of cyclocopter, numerical analysis was carried out by a general purpose commercial CFD program, STAR-CD. According to tills analysis, the efficiency of cycloidal rotor could be improved more than 15% by the introduced methods.

Research of New Type Small Wind Turbine System (새로운 방식의 소형 풍력발전기 시스템 고찰)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Kim, Byoung-Wook;Kim, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.130-134
    • /
    • 2005
  • The objectives of this study are to improve the aerodynamics performance on the down-wind blade system with folding type blade which consists of the folding type rotor blade, wind vane yawing stabilizer and a bevel gearbox. The aerodynamics performance for the new wind turbine system are compared with those of the conventional up-wind blade system. In addition to, a novel multi voltage inverter system is applied for reductions of harmonic.

  • PDF

Optimization of Blade Sweep in an Axial Compressor Rotor (축류압축기 동익의 스윕각 최적화)

  • Jang, Choon-Man;Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.437-442
    • /
    • 2004
  • The optimization of a blade sweep for a transonic axial compressor rotor (NASA rotor 37) has been performed using a response surface method and a Reynolds-averaged Wavier-Stokes (RANS) flow simulation. Two shape variables of the rotor blade, which are used to define a blade sweep, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. The result shows that the adiabatic efficiency is increased to about 1 percent compared to that of the reference shape of the rotor blade. Relatively high increasement of the adiabatic efficiency is obtained between 20 and 60 percent span. In the present study, backward swept blade is more effective to increase the adiabatic efficiency In the axial compressor rotor.

  • PDF

Optimal Design of Composite Rotor Blade Cross-Section using Discrete Design variable (이산설계변수를 고려한 복합재 로터블레이드 단면 최적설계)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, optimal design of composite rotor blade cross-section to consider manufacturability was performed. Skin thickness, torsion box thickness and skin lay-up angle were adopted as discrete design variables and The position and width of a torsion box were considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and various constraints such as failure index, center mass, shear center, natural frequency and blade minimum mass per unit length were adopted. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box were determined by using an in-house program developed for the optimal design of rotor blade cross-section.

Study on the Analysis of Structural Dynamic Characteristics and Modal Test of Unmanned Helicopter Rotor Blades (무인헬리콥터 로터 블레이드의 구조적 진동특성 분석 및 시험에 관한 연구)

  • 정경렬;이종범;한성호;최길봉
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.215-224
    • /
    • 1995
  • In this paper, the three-dimensional finite element model is established to investigate the structural dynamic characteristics of rotor blade using a finite element analysis. Six natural frequencies and mode shapes are calculated by computer simulation. The first three flapping modal frequencies, the first two lead-lag modal frequencies, and the first feathering modal frequency are validated through comparison with the modal test results of the fixed rotor blade. The computer simulation results are found in good agreement with experimentally measured natural frequencies. The important results are obtained as follows: (1) Natural frequencies are changed due to the variation of rotational speed and fiber angle of rotor blade, (2) Weak coupling between flapping mode shape and lead-lag mode shape are detected, (3) Centrifugal force has more effect on flapping modal frequency than lead-lag modal frequency.

  • PDF

Development of steam trubine rotor blade design package using GUI (graphic user interface) (그래픽 환경을 이용한 상호 대화 방식의 증기 터빈 회전익 설계 패키지 개발)

  • Lim Hyoung-Keun;Park Koo-Ha;Nah Un Hak;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.94-101
    • /
    • 2002
  • The steam turbine rotor blade is designed using the Turbine Rotor Design Package developed by the authors. It can quickly accomplish blade shape design in the power plant industry. The quasi-3d code is employed for analysis of passage flow in the blade sections. Iterative change of each blade shape is made by moving position of control points in the Bezier curve under GUI(graphic user interface) environment. The full 3-D blade shape is obtained by stacking of the section blades.

  • PDF

Comparison of the Performance of the VAV Dampers for the Circular Duct (원형 덕트용 VAV 댐퍼의 성능 비교)

  • Kwon, Young-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.699-703
    • /
    • 2012
  • The performance of the typical VAV dampers; blade type, venturi type and blade-orifice type, for the circular duct, is obtained by measuring the volume flow rate as a function of the opening degree. The performance features are discussed by comparing the volume flow rate of each damper. It is shown that the blade-orifice type damper, recently developed, is excellent in its linearity of the performance and that it is worse than the blade type but much better than the venturi type in its flow resistance.

AEffects of Impeller Blade Thickness on Performance of a Turbo Blower (임펠러 블레이드 두께가 터보블로워 성능에 미치는 영향)

  • Park, Jun-Young;Park, Moo-Ryong;Hwang, Soon-Chan;Ahn, Kook-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • This study is concerned with effects of impeller blade thickness on performance of a turbo blower. This turbo blower is developed as an air supply system in 250 kW MCFC system. The turbo blower consists of an impeller, two vaneless diffusers, a vaned diffuser and a volute. The three dimensional, steady state numerical analysis is simultaneously conducted for the impeller, diffuser and volute to investigate the performance of total system. To consider the non-uniform condition in volute inlet due to volute tongue, full diffuser passages are included in the calculation. The results of numerical analysis are validated with experimental results of thin blade thickness. Total pressure ratio, efficiency, slip factor and blade loading are compared in two cases. The slip factor is different in two cases and the comparison of two cases shows a good performance in thin blade thickness in all aspects.

Evaluation for Fatigue Resistance of Small Wind Turbine Composite Blade according to GL Guideline (GL Guideline에 의거한 소형 풍력발전용 복합재 블레이드의 피로 저항성 평가)

  • Jang, Yun Jung;Kang, Ki Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study aims to estimate the fatigue resistance of small wind composite blade using the fatigue life estimation formula in the GL guideline. For this, firstly, we estimated a turbine blade's bending moment spectrum by using wind profile wind profile and BEMT. And fatigue tests were performed to obtain the S-N curve of composite materials used in blade. In addition, a finite element analysis was used to identify fatigue critical locations and fatigue stress spectrum. And the fatigue resistance of composite blade were evaluated using the rainflow cycle counting, and Goodman diagram and the fatigue life estimation formula in the GL guideline.

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.