DOI QR코드

DOI QR Code

임펠러 블레이드 두께가 터보블로워 성능에 미치는 영향

AEffects of Impeller Blade Thickness on Performance of a Turbo Blower

  • 박준영 (한국기계연구원 그린환경에너지기계연구본부) ;
  • 박무룡 (한국기계연구원 그린환경에너지기계연구본부) ;
  • 황순찬 (한국기계연구원 그린환경에너지기계연구본부) ;
  • 안국영 (한국기계연구원 그린환경에너지기계연구본부)
  • 투고 : 2009.03.25
  • 심사 : 2010.07.06
  • 발행 : 2010.08.01

초록

This study is concerned with effects of impeller blade thickness on performance of a turbo blower. This turbo blower is developed as an air supply system in 250 kW MCFC system. The turbo blower consists of an impeller, two vaneless diffusers, a vaned diffuser and a volute. The three dimensional, steady state numerical analysis is simultaneously conducted for the impeller, diffuser and volute to investigate the performance of total system. To consider the non-uniform condition in volute inlet due to volute tongue, full diffuser passages are included in the calculation. The results of numerical analysis are validated with experimental results of thin blade thickness. Total pressure ratio, efficiency, slip factor and blade loading are compared in two cases. The slip factor is different in two cases and the comparison of two cases shows a good performance in thin blade thickness in all aspects.

키워드

참고문헌

  1. Hashihara, K., Goto, A., 2001, “Turbomachinery Blade Design Using 3-D Inverse Design Method, CFD and Optimization Algorithm,” GT2001-0358.
  2. Cosentino, R., Alsalihi, Z., and Van den Braembussche, R. A., “Expert System for Radial Impeller Optimisation,” Proceedings of Euroturbo4 ATI-CST-039/01.
  3. Bonaiuti, D. and Baldassarre, L., 2002, “Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique,” GT2002-30619.
  4. 강신형, 조운제, 윤하용, 이승갑, 1999, “초소형 원심압축기의 날개 두께 변화에 따른 성능에 관한 실험적 연구,” 유체기계저널, 제2권, 제1호, pp. 15-21.
  5. 최유진, 송준영, 김승조, 강신형, 1999, “원심 압축기 임펠러의 최적 구조 설계,” 유체기계저널, 제2권, 제4호, pp. 31-39.
  6. ANSYS CFX and Turbo Grid, Version 11.1.
  7. Cheng Xu and Michael Muller, 2005, “Development and Design of a Centrifugal Compressor Volute,” International Journal of Rotating Machinery pp. 190-196. https://doi.org/10.1155/IJRM.2005.190
  8. Jin-Hyuk Kim, Jae-Ho Choi and Kwang-Yong Kim, 2009, “Design Optimization of a Centrifugal Compressor Impeller using Radial Basis Nueral Network Method,” GT2009-59666.
  9. Wiesner, F. J., 1967, “A Review of Slip Factors for Centrifugal Impellers,” Journal of Engineering for power, pp. 558-572.
  10. Paeng, K. S. and Chung, M. K., 2001, “A New Slip Factor for Centrifugal Impellers,” Proc. Inst. Mech. Eng., Vol. 215 Part A, pp. 645-649. https://doi.org/10.1243/0957650011538776
  11. Qiu, X., Mallikarachchi, C. and Anderson, M., 2007, “A New Slip Factor Model for Axial and Radial Impellers,” GT2007-27064.

피인용 문헌

  1. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.547