DOI QR코드

DOI QR Code

Evaluation for Fatigue Resistance of Small Wind Turbine Composite Blade according to GL Guideline

GL Guideline에 의거한 소형 풍력발전용 복합재 블레이드의 피로 저항성 평가

  • Jang, Yun Jung (Research Center for Urban Wind Energy Systems, Kunsan National University) ;
  • Kang, Ki Weon (Department of Mechanical Engineering, Kunsan National University)
  • 장윤정 (군산대학교 풍력발전원천기술센터) ;
  • 강기원 (군산대학교 기계자동차공학부)
  • Received : 2012.10.05
  • Accepted : 2013.06.19
  • Published : 2013.08.01

Abstract

This study aims to estimate the fatigue resistance of small wind composite blade using the fatigue life estimation formula in the GL guideline. For this, firstly, we estimated a turbine blade's bending moment spectrum by using wind profile wind profile and BEMT. And fatigue tests were performed to obtain the S-N curve of composite materials used in blade. In addition, a finite element analysis was used to identify fatigue critical locations and fatigue stress spectrum. And the fatigue resistance of composite blade were evaluated using the rainflow cycle counting, and Goodman diagram and the fatigue life estimation formula in the GL guideline.

Keywords

References

  1. 황병선, 2010, "최신 풍력 터빈의 이해," 아진, pp. 145.
  2. 최정훈, 강민성, 박홍선, 구재민, 석창성, 2010, "충격손상을 받은 항공기용 복합재료의 잔류강도 변화에 따른 피로수 명 특성 평가," 대한기계학회 재료 및 파괴부문 학술대회, pp. 53-59.
  3. 음학진, 남현우, 김만응, 2010, "IEC 61400-1 DLC.1.1에 따른 풍력터빈의 극한하중," 대한기계학회 춘추학술대회, pp. 3648-3653.
  4. 박성완, 2004, "인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측," 한국생산제조시스템학회, Vol. 13, No. 6, pp. 64-73.
  5. 기영중, 김승호, 한정호, 정재권, 허장욱, 2012, "손상된 복합재 로터 블레이드의 고주기 피로수명 평가," 대한기계학회, 제36권, Vol. 10, pp. 1275-1282. https://doi.org/10.3795/KSME-A.2012.36.10.1275
  6. Kong, C.D., Kim, T.H., Han, D.H., Sugiyama, Y., 2006, "Investigation of fatigue life for a medium scale composite wind turbine blade," International Journal of Fatigue, Vol. 28, pp. 1382-1388. https://doi.org/10.1016/j.ijfatigue.2006.02.034
  7. Spera, D.A., 1993, "Dynamic loads in horizontal-axis wind turbines part II : empirical equation," Windpower'93, pp. 282-289.
  8. Ronold, K.O., Wedel-Heinen, J., Christensen, C.J., 1999, "Reliability-based fatigue design of wind-turbine rotor blades," Engineering Structures, Vol. 21, pp. 1101-1114. https://doi.org/10.1016/S0141-0296(98)00048-0
  9. Miner, M.A., 1945, "Cumulative Damage in Fatigue, Journal of Applied Mechanics," Vol. 12, pp. A159-A164.
  10. Wu, J.H., Lai, F.M., 2011, "Fatigue Life Analysis of Small Composite Sandwich Wind Turbine Blades," Procedia Engineering, 14, pp. 2014-2020. https://doi.org/10.1016/j.proeng.2011.07.253
  11. International Standard, IEC 61400-2, 2006, "Design requirements for small wind turbine," Second edition.
  12. Epaarachchi, J.A., Clausen, P.D., 2006, "The development of a fatigue loading spectrum for small wind turbine blades," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 94, pp.207-223. https://doi.org/10.1016/j.jweia.2005.12.007
  13. Lloyd Germanischer. 1999, "Rules and regulations IV-NonMarine Technology, Part I-wind energy".
  14. PROPID Version 5.1, 2007, University of Illinois at Urbana-Champaign.
  15. ABAQUS Version 6.10, 2010, Dassault Systemes Simulia.
  16. Bannantine, J.A., Comer, J.J., Handrock., 1990, Fundamentals of metal fatigue analysis, New Jersey : Prentice-Hall.

Cited by

  1. vol.17, pp.2, 2014, https://doi.org/10.5293/kfma.2014.17.2.063
  2. vol.17, pp.2, 2014, https://doi.org/10.5293/kfma.2014.17.2.079