The marginal distribution of X is considered when (X, Y) has a truncated bivariate t-distribution. This paper mainly focuses on the marginal nontruncated distribution of X where Y is truncated below at its mean and its observations are not available. Several properties and applications of this distribution, including relationship with Azzalini's skew-normal distribution, are obtained. To circumvent inferential problem arises from adopting the frequentist's approach, a Bayesian method utilizing a data augmentation method is suggested. Illustrative examples demonstrate the performance of the method.
Communications for Statistical Applications and Methods
/
v.10
no.3
/
pp.895-907
/
2003
Recent demands for representing the location of multivariate data produce various multivariate medians such as Tukey median, Oja median and spatial median. They are considered as multivariate versions of the median which is widely recognized as a robust alternative to the arithmetic mean. Many studies show that those multivariate median preserve the robustness. However, the effectiveness of those medians is not fully identified. In this note the relative efficiencies of the multivariate medians are investigated in various configurations under the bivariate t-distribution. It is shown that Tukey median outperforms the others in most configurations.
We consider the stress-strength model in which a unit of strength $T_2$ is subjected to environmental stress $T_1$. An important measure considered in stress-strength model is the reliability parameter R=P($T_2$ > $T_1$). The greater the value of R is, the more reliable is the unit to perform its specified task. In this article, we consider the situations in which $T_1$ and $T_2$ are both independent and dependent, and have certain bivariate distributions as their joint distributions. To study the effect of dependency on R, we investigate several bivariate distributions of $T_1$ and $T_2$ and compare the values of R for these distributions. Numerical comparisons are presented depending on the parameter values as well.
Background: Spatial structure of plants in a population reflects complex interactions of ecological and evolutionary processes. For dioecious plants, differences in reproduction cost between sexes and sizes might affect their spatial distribution. Abiotic heterogeneity may also affect adaptation activities, and result in a unique spatial structure of the population. Thus, we examined sex- and size-related spatial distributions of old-growth forest of dioecious tree Torreya nucifera in extremely heterogeneous Gotjawal terrain of Jeju Island, South Korea. Methods: We generated a database of location, sex, and size (DBH) of T. nucifera trees for each quadrat ($160{\times}300m$) in each of the three sites previously defined (quadrat A, B, C in Site I, II, and III, respectively). T. nucifera trees were categorized into eight groups based on sex (males vs. females), size (small vs. large trees), and sex by size (small vs. large males, and small vs. large females) for spatial point pattern analysis. Univariate and bivariate spatial analyses were conducted. Results: Univariate spatial analysis showed that spatial patterns of T. nucifera trees differed among the three quadrats. In quadrat A, individual trees showed random distribution at all scales regardless of sex and size groups. When assessing univariate patterns for sex by size groups in quadrat B, small males and small females were distributed randomly at all scales whereas large males and large females were clumped. All groups in quadrat C were clustered at short distances but the pattern changed as distance was increased. Bivariate spatial analyses testing the association between sex and size groups showed that spatial segregation occurred only in quadrat C. Males and females were spatially independent at all scales. However, after controlling for size, males and females were spatially separated. Conclusions: Diverse spatial patterns of T. nucifera trees across the three sites within the Torreya Forest imply that adaptive explanations are not sufficient for understanding spatial structure in this old-growth forest. If so, the role of Gotjawal terrain in terms of creating extremely diverse microhabitats and subsequently stochastic processes of survival and mortality of trees, both of which ultimately determine spatial patterns, needs to be further examined.
If normality of an observed data is not a viable assumption, we can carry out normal-theory analyses by suitable transforming data. Power transformation by Box and Cox, one of the transformation methods, is derived the power which maximized the likelihood function. But it doesn't induces the closed form in mathematical analysis. In this paper, we compose some R the syntax of which is easier than other statistical packages for deriving the power with using numerical methods. Also, by using R, we show the transformed data approximately distributed the normal through Q-Q plot in univariate and bivariate cases with some examples. Finally, we present the value of a goodness-of-fit statistic(AD) and its p-value for normal distribution. In the similar procedure, this method can be extended to more than bivariate case.
For modeling skewed semicircular data, we derive new family of the exponential distributions. We extend it to the l-axial exponential distribution by a transformation for modeling any arc of arbitrary length. It is straightforward to generate samples from the f-axial exponential distribution. Asymptotic result reveals two things. The first is that linear exponential distribution can be used to approximate the l-axial exponential distribution. The second is that the l-axial exponential distribution has the asymptotic memoryless property though it doesn't have strict memoryless property. Some trigonometric moments are also derived in closed forms. Maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for goodness of fit test of the l-axial exponential distribution. We finally obtain a bivariate version of two kinds of the l-axial exponential distributions.
Distribution of fecal pollution indicator bacteria and environmental parameter were investigated of urban artificial lakes. An average concentration of temperature, pH, SS, DO, $COD_{Mn}$, T-P, T-N, Turbidity, Chl-a were $21.5^{\circ}C$, 8.07, 116.70 mg/l, 8.66 mg/l, 2.24 mg/1, 0.52 mg/l, 1.71mg/l, 80.54 NTU, and 52.12 mg/l respectively. From the results of bivariate correlation analysis, fecal contamination indicator bacteria were found to be mutually correlated. And turbidity and suspended solid were correlated. From the results of principal component analysis, four factors were extracted. And four factors of variance explained up to 81.5 percentage. Factor 1 was pollution pattern by fecal contamination, factor 2 was physical pollution pattern by pollution source, factor 3 was natural pollution by precipitation, and factor 4 was artificial pollution pattern by organism.
A Bayesian multiple change-point model for small data is proposed for multivariate means and is an extension of the univariate case of Cheon and Yu (2012). The proposed model requires data from a multivariate noncentral $t$-distribution and conjugate priors for the distributional parameters. We apply the Metropolis-Hastings-within-Gibbs Sampling algorithm to the proposed model to detecte multiple change-points. The performance of our proposed algorithm has been investigated on simulated and real dataset, Hanwoo fat content bivariate data.
Communications for Statistical Applications and Methods
/
v.18
no.3
/
pp.377-389
/
2011
A higher quality level is generally perceived by customers as improved performance by assigning a correspondingly higher satisfaction score. The third generation index $C_{pmk}$ is more powerful than two useful indices $C_p$ and $C_{pk}$ that have been widely used in six sigma industries to assess process performance. In actual manufacturing industries, process capability analysis often entails characterizing or assessing processes or products based on more than one engineering specification or quality characteristic. Since these characteristics are related, it is a risky undertaking to represent the variation of even a univariate characteristic by a single index. Therefore, the desirability of using vector-valued process capability index(PCI) arises quite naturally. In this paper, we consider more powerful vector-valued process capability index $C_{pmk}$ = ($C_{pmkx}$, $C_{pmky}$)$^t$ that consider the univariate process capability index $C_{pmk}$. First, we examine the process capability index $C_{pmk}$ and plug-in estimator $\hat{C}_{pmk}$. In addition, we derive its asymptotic distribution and variance-covariance matrix $V_{pmk}$ for the vector valued process capability index $C_{pmk}$. Under the assumption of bivariate normal distribution, we study asymptotic confidence regions of our vector-valued process capability index $C_{pmk}$ = ($C_{pmkx}$, $C_{pmky}$)$^t$.
In this paper, a random number generator for simulation of speech-waveform coders was designed. A random number generator having a desired probability density function and a desired power spectral density is discussed and experimental results are presented. The technique is based on Sondhi algorithm which consists of a linear filter and a memoryless nonlinearity. Several methods of obtaining memoryless nonlinearities for some typical continuous distributions are discussed. Sondhi algorithm is analyzed in the time domain using the diagonal expansion of the bivariate Gaussian probability density function. It is shown that the Sondhi algorithm gives satisfactory results when the memoryless nonlinearity is given in an antisymmetric form as in uniform, Cauchy, binary and gamma distribution. It is shown that the Sondhi algorithm does not perform well when the corresponding memoryless nonlinearity cannot be obtained analytically as in Student-t and F distributions, and when the memoryless nonlinearity can not be expressed in an antisymmetric form as in chi-squared and lognormal distributions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.