• 제목/요약/키워드: biotechnology and medical engineering

검색결과 347건 처리시간 0.026초

Kidney reconstruction using kidney cell transplantation in kidney failure animal model

  • Kim, Sang-Soo;Park, Heung-Jae;Han, Joung-Ho;Choi, Cha-Yong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.347-350
    • /
    • 2003
  • 본 연구에서는 신장세포를 이용하여 신장을 재생하는 조직공학적인 신장 재생 방법을 개발하기 위해 신생 rat으로부터 분리한 신장세포를 피브린 고분자와 혼합하여 신부전 rat의 신장에 주사 이식하였고 4주 후에 신장 구조의 형성 및 개선된 BUN, creatinine 수치를 확인하였다. 이는 이식된 세포에 의해 신부전의 증상이 완화(치료)된 것으로, 앞으로 이에 대한 추가적인 장기간의 실험이 필요하다.

  • PDF

Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices

  • Park, Jeong-Woo;Nam, Yun-Suk;Masamichi Fujihira
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.76-85
    • /
    • 2004
  • Biodevices composed of biomolecular layer have been developed in various fields such as medical diagnosis, pharmaceutical screening, electronic device, photonic device, environmental pollution detection device, and etc. The biomolecules such as protein, DNA and pigment, and cells have been used to construct the biodevices such as biomolecular diode, biostorage device, bioelectroluminescence device, protein chip, DNA chip, and cell chip. Substantial interest has focused upon thin film fabrication or the formation of biomaterials mono- or multi-layers on the solid surfaces to construct the biodevices. Based on the development of nanotechnology, nanoscale fabrication technology for biofilm has been emerged and applied to biodevices due to the various advantages such as high density immobilization and orientation control of immoblized biomolecules. This review described the nanoscale fabrication of biomolecular film and its application to bioelectronic devices and biochips.

The Soluble Form of the Cellular Prion Protein Enhances Phagocytic Activity and Cytokine Production by Human Monocytes Via Activation of ERK and $NF-{\kappa}B$

  • Jeon, Jae-Won;Park, Bum-Chan;Jung, Joon-Goo;Jang, Young-Soon;Shin, Eui-Cheol;Park, Young Woo
    • IMMUNE NETWORK
    • /
    • 제13권4호
    • /
    • pp.148-156
    • /
    • 2013
  • The $PrP^C$ is expressed in many types of immune cells including monocytes and macrophages, however, its function in immune regulation remains to be elucidated. In the present study, we examined a role for $PrP^C$ in regulation of monocyte function. Specifically, the effect of a soluble form of $PrP^C$ was studied in human monocytes. A recombinant fusion protein of soluble human $PrP^C$ fused with the Fc portion of human IgG1 (designated as soluble $PrP^C$-Fc) bound to the cell surface of monocytes, induced differentiation to macrophage-like cells, and enhanced adherence and phagocytic activity. In addition, soluble $PrP^C$-Fc stimulated monocytes to produce pro-inflammatory cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6. Both ERK and $NF-{\kappa}B$ signaling pathways were activated in soluble $PrP^C$-treated monocytes, and inhibitors of either pathway abrogated monocyte adherence and cytokine production. Taken together, we conclude that soluble $PrP^C$-Fc enhanced adherence, phagocytosis, and cytokine production of monocytes via activation of the ERK and $NF-{\kappa}B$ signaling pathways.

Effect of Low Temperature Preservation and Cell Density on Metabolic Function in a Bioartificial Live

  • Park, Yueng-Guen;Takehiko Tosha;Satoshi Fujita;Boru Zhu;Hiroo Iwata;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권1호
    • /
    • pp.41-46
    • /
    • 2003
  • Difficulties associated with bioartificial liver (BAL) preservation limit not only the commercialization of BAL, but also its clinical trials. In this study, the possibility of cold preservation of BAL cartridges containing porcine hepatocytes was examined at 4$^{\circ}C$. In an in vitro perfusion culture System, BAL cartridges maintained cytochrome P450 metabolic function for at least 50 days. However, all BAL cartridges completely lost their ammonia eliminating ability when stored at 4$^{\circ}C$. We a1so studied the effect of cell density on the maintenance of BAL liver function In a highly differentiated and healthy state. As expected, BALs containing a larger number of hepatocytes demonstrated higher metabolic functions. When metabolic functions were compared per gram of hepatotytes, no large differences were observed between devices containing different densities of hepatocytes. Decreased cell density did not Successfully prolong BAL function. The viability and function of isolated hepatotytes highly depend on the culture conditions, such as cell density, substrata, culture media, and additives to the culture media. Perfusion culture of BAL cartridges at 4$^{\circ}C$ gave a promosing result with respect to the maintenance of P450 activity. However, as indicated by the rapid loss of ammonia metabolic activity, many factors still remain to be optimized for preservation of BAL keeping high metabolic functions for a longer time.

MMPP is a novel VEGFR2 inhibitor that suppresses angiogenesis via VEGFR2/AKT/ERK/NF-κB pathway

  • Na-Yeon Kim;Hyo-Min Park;Jae-Young Park;Uijin Kim;Ha Youn Shin;Hee Pom Lee;Jin Tae Hong;Do-Young Yoon
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.244-249
    • /
    • 2024
  • Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.

Investigation of Immune Biomarkers Using Subcutaneous Model of M. tuberculosis Infection in BALB/c Mice: A Preliminary Report

  • Husain, Aliabbas A.;Daginawala, Hatim F.;Warke, Shubangi R.;Kalorey, Devanand R.;Kurkure, Nitin V.;Purohit, Hemant J.;Taori, Girdhar M.;Kashyap, Rajpal S.
    • IMMUNE NETWORK
    • /
    • 제15권2호
    • /
    • pp.83-90
    • /
    • 2015
  • Evaluation and screening of vaccines against tuberculosis depends on development of proper cost effective disease models along with identification of different immune markers that can be used as surrogate endpoints of protection in preclinical and clinical studies. The objective of the present study was therefore evaluation of subcutaneous model of M.tuberculosis infection along with investigation of different immune biomarkers of tuberculosis infection in BALB/c mice. Groups of mice were infected subcutaneously with two different doses : high ($2{\times}10^6CFU$) and low doses ($2{\times}10^2CFU$) of M.tuberculosis and immune markers including humoral and cellular markers were evaluated 30 days post M.tuberculosis infections. Based on results, we found that high dose of subcutaneous infection produced chronic disease with significant (p<0.001) production of immune markers of infection like $IFN{\gamma}$, heat shock antigens (65, 71) and antibody titres against panel of M.tuberculosis antigens (ESAT-6, CFP-10, Ag85B, 45kDa, GroES, Hsp-16) all of which correlated with high bacterial burden in lungs and spleen. To conclude high dose of subcutaneous infection produces chronic TB infection in mice and can be used as convenient alternative to aerosol models in resource limited settings. Moreover assessment of immune markers namely mycobacterial antigens and antibodies can provide us valuable insights on modulation of immune response post infection. However further investigations along with optimization of study protocols are needed to justify the outcome of present study and establish such markers as surrogate endpoints of vaccine protection in preclinical and clinical studies in future.

알긴산 분해 Methylobacterium sp. HJM27 균주의 분리 및 특성 (Isolation and Characteristics of Alginate-Degrading Methylobacterium sp. HJM27)

  • 김옥주;이동근;이성목;이석준;도형주;박혜진;김안드레;이재화;하종명
    • 한국미생물·생명공학회지
    • /
    • 제38권2호
    • /
    • pp.144-150
    • /
    • 2010
  • 본 연구는 알긴산 분해효소 활성이 뛰어난 세균을 확보하고 선정된 균주의 효소생산과 활성에 영향을 미치는 알긴산과 NaCl의 농도, 질소원 종류, 온도, pH 등을 파악하고자 하였다. 해조류 섭식 동물인 전복, 소라, 해삼, 멍게, 개불 등에서 유래한 총 5만여 콜로니 중 알긴산 분해효소 활성이 우수한 27개 균주를 분리하였고 최종적으로 전복 유래의 균주를 선정하였다. 16S rDNA 염기서열 분석으로 선정된 균주를 Methylobacterium sp. HJM27으로 명명하였고 알긴산 분해효소의 활성은 1.0% sodium alginate, 0.5% peptone, 0.3% yeast extract, 1.5% NaCl, $25^{\circ}C$, 48시간 배양에서 가장 높았다. 알긴산 분해효소의 활성은 $25^{\circ}C$, pH 9에서 최대로 0.8%(w/v) sodium alginate 용액에서 30분만에 1.217 g/L의 환원당을 생성하였다. 분리된 균주와 이 균주의 알긴산 분해효소를 이용하여 해조류를 바이오에너지와 식 의약 소재로 활용 할 수 있을 것으로 판단된다.

Advanced Technologies and Mechanisms for Yeast Evolutionary Engineering

  • Ryu, Hong-Yeoul
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.423-428
    • /
    • 2020
  • In vitro evolution is a powerful technique for the engineering of yeast strains to study cellular mechanisms associated with evolutionary adaptation; strains with desirable traits for industrial processes can also be generated. There are two distinct approaches to generate evolved strains in vitro: the sequential transfer of cells in the stationary phase into fresh medium or the continuous growth of cells in a chemostat bioreactor via the constant supply of fresh medium. In culture, evolutionary forces drive diverse adaptive mechanisms within the cell to overcome environmental or intracellular stressors. Especially, this engineering strategy has expanded to the field of human cell lines; the understanding of such adaptive mechanisms provides promising targets for the treatment of human genetic diseases and cancer. Therefore, this technology has the potential to generate numerous industrial, medical, and academic applications.

Produce a Novel Breast Cancer Disease Model with Test-off System

  • Park, Jun-Hong;Lee, Eun-Ju;Kim, Myoung-Ok;Kim, Sung-Hyun;Park, Jung-Ok;Cho, Kyong-In;Park, Hum-Dai;Ryoo, Zae-Young
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.93-93
    • /
    • 2002
  • The utility of transgenic animal for studying the function of a particular gene in the breast system has been limited because transgenic typically occurs constitutively throughout development and in most tissue. So we use the inducible gene expression system. Several inducible gene expression system have been developed in vitro in recent years to overcome limitation with transgenic mice. (omitted)

  • PDF