• 제목/요약/키워드: biosynthesis gene cluster

검색결과 86건 처리시간 0.033초

Characterization of a Chalcosyltransferase (gerGTII) in Dihydrochalcomycin Biosynthesis

  • Pageni, Binod Babu;Oh, Tae-Jin;Thuy, Ta Thi Thu;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.278-284
    • /
    • 2008
  • An open reading frame, designated GerGTII and located downstream of the polyketide synthase genes, has been identified as a chalcosyltransferase by sequence analysis in the dihydrochalcomycin biosynthetic gene cluster of Streptomyces sp. KCTC 0041BP. The deduced product of gerGTII is similar to several glycosyltransferases, authentic and putative, and it displays a consensus sequence motif that appears to be characteristic of a sub-group of these enzymes. Specific disruption of gerGTII within the S. sp. KCTC 0041BP genome by insertional in-frame deletion method, resulted complete abolishment of dihydrochalcomycin and got the 20-O-mycinosyl-dihydrochalconolide as intermediate product in dihydrochalcomycin biosynthesis which was confirmed by electron spray ionization-mass spectrometry and liquid chromatography-mass spectrometry. Dihydrochalcomycin also was recovered after complementation of gerGTII.

Biochemical Characterization of an ABC Transporter Gene Involved in Cephabacin Biosynthesis in Lysobacter lactamgenus

  • Park, Myoung-Jin;Yon, Jei-Oh;Lim, Si-Kyu;Ryu, Dewey D.-Y.;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.635-638
    • /
    • 2004
  • An ATP-binding-cassette (ABC) transporter gene in the cephabacin biosynthetic gene cluster of Lysobacter lactamgenus was characterized. The amplified orf10 (cpbJ) gene was subcloned into pET-28a(+) vector and expressed in E. coli BL21(DE3) strain by 0.5 mM IPTG at $30^{\circ}C$. The membrane fraction of recombinant E. coli cells was separated by ultracentrifugation, and solubilized using 2.5% octyl-$\beta$-D-glucoside. Using the solubilized membrane fraction, the artificial proteoliposomes were reconstituted and analyzed for the biological activity of CpbJ protein. Upon measuring ATPase activity, the proteoliposome made from recombinant E. coli membrane proteins showed slightly higher activity than that from host E. coli membrane proteins. In the measurement of membrane transport activity, the reconstituted proteoliposome of recombinant E. coli membrane proteins exhibited higher activity when both substrates of cephalosporin C and L-Ala-L-Ser were applied, compared to the case of cephalosporin C or L-Ala-L-Ser only. It implies that the CpbJ protein is an ABC transporter secreting cephabacin antibiotics synthesized in cytoplasm.

Functional Analysis of Spectinomycin Biosynthetic Genes from Streptomyces spectabilis ATCC 27741

  • Jo, You-Young;Kim, Sun-Hee;Yang, Young-Yell;Kang, Choong-Min;Sohng, Jae-Kyung;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.906-911
    • /
    • 2003
  • The function of genes related to spectinomycin biosynthesis (spcD, speA, speB, spcS2) from Streptomyces spectabilis ATCC 27741, a spectinomycin producer, was analyzed. Each gene was subcloned from a spectinomycin biosynthetic gene cluster and overexpressed in E. coli BL21 (DE3) using pET vector. After incubating each purified protein with its possible substrates, the final products were analyzed using high-performance liquid chromatography (HPLC). From these results, spcD, speA, and speB have been identified to be dTDP-glucose synthase, myo-inositol monophosphatase, and myo-inositol dehydrogenase, respectively. In addition, the results suggest that the spcS2 gene product functions downstream of the speB gene product in the biosynthetic pathway of spectinomycin. Taken together, the present study elucidates the early steps of the biosynthetic pathway for 6-deoxyhexose (6-DOH) part (actinospectose) and aminocyclitol part (actinamine) of spectinomycin.

Silencing of NbNAP1 Encoding a Plastidic SufB-like Protein Affects Chloroplast Development in Nicotiana benthamiana

  • Ahn, Chang Sook;Lee, Jeong Hee;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.112-118
    • /
    • 2005
  • It was previously shown that AtNAP1 is a plastidic SufB protein involved in Fe-S cluster assembly in Arabidopsis. In this study, we investigated the effects of depleting SufB protein from plant cells using virus-induced gene silencing (VIGS). VIGS of NbNAP1 encoding a Nicotiana benthamiana homolog of AtNAP1 resulted in a leaf yellowing phenotype. NbNAP1 was expressed ubiquitously in plant tissues with the highest level in roots. A GFP fusion protein of the N-terminal region (M1-V103) of NbNAP1 was targeted to chloroplasts. Depletion of NbNAP1 resulted in reduced numbers of chloroplasts of reduced size. Mitochondria also seemed to be affected. Despite the reduced number and size of the chloroplasts in the NbNAP1 VIGS lines, the expression of many nuclear genes encoding chloroplast-targeted proteins and chlorophyll biosynthesis genes remained unchanged.

Identification and Functional Analysis of the Chain Length Determinant Gene ste8 Involved in the Biosynthesis of Ebosin by Streptomyces sp. 139

  • Yang, Zhang;Li, Xiaohua;Qi, Xiaoqaing;Shan, Junjie;Jiang, Rong;Guo, Lianhong;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1500-1508
    • /
    • 2013
  • Ebosin, a novel exopolysaccharide produced by Streptomyces sp. 139, has obvious antirheumatic arthritis activity in vivo, and its biosynthesis gene cluster (ste), consisting of 27 open reading frames, has been identified. This paper reports our study of the gene functionality of ste8, the predicted protein product of which is homologous to some bacterial chain length determinant Wzz proteins. For characterization of Ste8, ste8 was cloned and expressed in the mutant strain E. coli 086:H2 (${\Delta}wzz$). The functional complementation of wzz by ste8 was demonstrated by the restoration of wild-type lipopolysaccharide biosynthesis and increased levels of serum resistance of E. coli 086:H2 (${\Delta}wzz$) (pET30a-ste8). To examine the function of ste8 in ebosin biosynthesis, the gene was knocked out with a double crossover via homologous recombination. The molecular weight of the ebosin derivative EPS-8m produced by the mutant Streptomyces sp. 139 ($ste8^-$) was much lower than that of ebosin, and the binding activity of EPS-8m for IL-1R decreased significantly compared with ebosin. These results demonstrate that ste8 encodes a chain length determinant (Wzz) that functions in ebosin biosynthesis.

Enhanced Production of Astaxanthin by Metabolically Engineered Non-mevalonate Pathway in Escherichia coli

  • Jeong, Tae Hyug;Cho, Youn Su;Choi, Seong-Seok;Kim, Gun-Do;Lim, Han Kyu
    • 한국미생물·생명공학회지
    • /
    • 제46권2호
    • /
    • pp.114-119
    • /
    • 2018
  • Astaxanthin is one of the major carotenoids used in pigment has a great economical value in pharmaceutical markets, feeding, nutraceutical and food industries. This study was to increase the production of astaxanthin by co-expression with transformed Escherichia coli using six genes involved in the non-mevalonate pathway. Involved in the non-mevalonate biosynthetic pathway of the strain Kocuria gwangalliensis were cloned dxs, ispC, ispD, ispE, ispF, ispG, ispH and idi genes in order to increase astaxanthin production from the transformed E. coli. And co-expression with the genes to compared the amount of astaxanthin production. This engineered E. coli, containing both the non-mevalonate pathway gene and the astaxanthin biosynthesis gene cluster, produced astaxanthin at $1,100{\mu}g/g$ DCW (dry cell weight), resulting in approximately three times the production of astaxanthin.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

Elicitation of Penicillin Biosynthesis by Alginate in Penicillium chrysogenum, Exerted on pcbAB, pcbC, and penDE Genes at the Transcriptional Level

  • Liu, Gang;Casqueiro, Javier;Gutierrez, Santiago;Kosalkova, Katarina;Castillo, Nancy-Isabel;Martin, Juan-F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권5호
    • /
    • pp.812-818
    • /
    • 2001
  • Alginate and alginate-derived oligomannuronate enhanced penicillin production in shake flask and fermentor cultures of Penicillium chrysogenum Wis 54-1255 (containing a single copy of the penicillin gene cluster) and in the high producter strain P. chrysogenum AS-P-99 (containing multiple copies of the penicillin gene cluster). Alginate was not used as a single carbon source by P. chryogenum. The stimulatory effect on penicillin production was observed in a defined medium and, to a lower extent, in a complex production medium containing corn steep liquor. Alginate-supplemented cells showed higher transcript levels of the three penicillin biosynthetic genes, pcbAB, pcbC, and penDE, than cells grown in the absence of alginate. The promoters of the pcbAB, pcbC, and penDE genes were coupled to the reporter lacZ gene and introduced as monocopy constructions in P. chrysogenum Wis 54-1225 npe10 by targeted integration in the pyrG locus; the reporter ${\beta}$-galactosidase activity expressed from the three promoters was stimulated by alginate added to the culture medium of the transformants. These results indicate that the stimulation of penicillin production by alginate was derived from an increase in the transcriptional activity of the penicillin biosynthesis genes. The induction by alginate of the transcription of the three penicillin biosynthetic genes is good example of the coordinated induction of secondary metabolism genes by elicitors of plant (or microbial) origin.

  • PDF

Biosynthesis of Glycosylated Derivatives of Tylosin in Streptomyces venezuelae

  • Han, Ah-Reum;Park, Sung-Ryeol;Park, Je-Won;Lee, Eun-Yeol;Kim, Dong-Myung;Kim, Byung-Gee;Yoon, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.613-616
    • /
    • 2011
  • Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl-D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.

Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii

  • Hasan, Tarik;Choi, Chul Hee;Oh, Man Hwan
    • Genomics & Informatics
    • /
    • 제13권1호
    • /
    • pp.2-6
    • /
    • 2015
  • Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.