DOI QR코드

DOI QR Code

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei (College of life science, Hebei University) ;
  • Wang, Yana (Institute of Biology, Hebei Academy of Science) ;
  • Yang, Qingxia (Institute of Biology, Hebei Academy of Science) ;
  • Zhao, Wenya (Institute of Biology, Hebei Academy of Science) ;
  • Cui, Liting (Institute of Biology, Hebei Academy of Science) ;
  • Wang, Buqing (Institute of Biology, Hebei Academy of Science) ;
  • Zhang, Liping (Institute of Biology, Hebei Academy of Science) ;
  • Cheng, Huicai (Institute of Biology, Hebei Academy of Science) ;
  • Song, Shuishan (Institute of Biology, Hebei Academy of Science) ;
  • Zhang, Liping (College of life science, Hebei University)
  • Received : 2019.01.29
  • Accepted : 2019.10.05
  • Published : 2020.03.28

Abstract

Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

Keywords

References

  1. Compant S, Duffy B, Nowak J, Clement C, Barka EA. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  2. Hirooka T, Ishii H. 2013. Chemical control of plant diseases. J. General Plant Pathol. 79: 390-401. https://doi.org/10.1007/s10327-013-0470-6
  3. Fickers P. 2012. Antibiotic compounds from Bacillus: Why are they so Amazing? Am. J. Biochem. Biotechnol. 8: 38-43. https://doi.org/10.3844/ajbbsp.2012.38.43
  4. Johnson BA, Anker H, Meleney FL. 1945. Bacitracin: A New antibiotic produced by a member of the B. Subtilis Group. Science 102: 376-377. https://doi.org/10.1126/science.102.2650.376
  5. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. https://doi.org/10.1038/nbt1325
  6. Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, et al. 2017. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front. Microbiol. 8: 1438. https://doi.org/10.3389/fmicb.2017.01438
  7. Xu BH, Lu YQ, Ye ZW, Zheng QW, Wei T, Lin JF, et al. 2018. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. PLoS One 13: e0202893. https://doi.org/10.1371/journal.pone.0202893
  8. Chen XH, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, et al. 2009. Difficidin and bacilysin produced by plantassociated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38-44. https://doi.org/10.1016/j.jbiotec.2008.10.015
  9. Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, et al. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70: 1417-1423. https://doi.org/10.1021/np070070k
  10. Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P. 1999. The structure of two fengycins from Bacillus subtilis S499. Z. Naturforsch. C. 54: 859-866. https://doi.org/10.1515/znc-1999-1102
  11. Peypoux F, Bonmatin JM, Labbe H, Grangemard I, Das BC. Ptak M, Wallach J, et al. 1994. [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur. J. Biochem. 224: 89-96. https://doi.org/10.1111/j.1432-1033.1994.tb19998.x
  12. Cui LT, Liu HW, Cheng HC, Wang YN, Wang Q, Li QY, et al. 2019. Cloning and bioinformatics analysis of LanM gene in Bacillus amyloliquefaciens WS-8. Genomics Appl. Biol. 38: 644-649.
  13. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. https://doi.org/10.1038/nmeth.2474
  14. Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29: 2607-2618. https://doi.org/10.1093/nar/29.12.2607
  15. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, et al. 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta) genomic annotation. Omics 12: 137-141. https://doi.org/10.1089/omi.2008.0017
  16. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  17. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-243. https://doi.org/10.1093/nar/gkv437
  18. Grant JR, StothardP. 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36: W181-184. https://doi.org/10.1093/nar/gkn179
  19. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9: 357-359. https://doi.org/10.1038/nmeth.1923
  20. Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. 2015. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 33: 243-246. https://doi.org/10.1038/nbt.3172
  21. Xin B, Zheng J, Xu Z, Li C, Ruan L, Peng D, et al. 2015. Three novel lantibiotics, ticins A1, A3, and A4, have extremely stable properties and are promising food biopreservatives. Appl. Environ. Microbiol. 81: 6964-6972. https://doi.org/10.1128/AEM.01851-15
  22. Xin B, Zheng J, Xu Z, Song X, Ruan L, Peng D, et al. 2015. The Bacillus cereus group is an excellent reservoir of novel lanthipeptides. Appl. Environ. Microbiol. 81: 1765-1774. https://doi.org/10.1128/AEM.03758-14
  23. Devillers J, Steiman R, Seigle-Murandi F. 1989. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere 19: 1693-1700. https://doi.org/10.1016/0045-6535(89)90512-2
  24. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41. https://doi.org/10.1186/1471-2105-4-41
  25. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34: D354-357. https://doi.org/10.1093/nar/gkj102
  26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29. https://doi.org/10.1038/75556
  27. Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA. 2004. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303: 679-681. https://doi.org/10.1126/science.1092600
  28. Wang J, Ge X, Zhang L, Teng K, Zhong J. 2016. One-pot synthesis of class II lanthipeptide bovicin HJ50 via an engineered lanthipeptide synthetase. Sci. Rep. 6: 38630. https://doi.org/10.1038/srep38630
  29. Zhi Y, Wu Q, Xu Y. 2017. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci. Rep. 7: 40976. https://doi.org/10.1038/srep40976
  30. Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  31. ten Have A, Mulder W, Visser J, van Kan JAL. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant Microbe Interact. 11: 1009-1016. https://doi.org/10.1094/MPMI.1998.11.10.1009
  32. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
  33. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  34. Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M, et al. 2012. Antimicrobial activity of Bacillus sp natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol. Biotechnol. 50: 25-31.
  35. Arrebola E, Jacobs R, Korsten L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395. https://doi.org/10.1111/j.1365-2672.2009.04438.x
  36. Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, et al. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
  37. Maget-Dana R, Thimon L, Peypoux F, Ptak M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V

Cited by

  1. Utilization of marigold (Tagetes erecta) flower fermentation wastewater as a fertilizer and its effect on microbial community structure in maize rhizosphere and non-rhizosphere soil vol.34, pp.1, 2020, https://doi.org/10.1080/13102818.2020.1781548
  2. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens vol.68, pp.50, 2020, https://doi.org/10.1021/acs.jafc.0c06396
  3. Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26 vol.35, pp.1, 2020, https://doi.org/10.1080/13102818.2021.1934540