Browse > Article
http://dx.doi.org/10.4014/jmb.1103.03032

Biosynthesis of Glycosylated Derivatives of Tylosin in Streptomyces venezuelae  

Han, Ah-Reum (Interdisciplinary Programs of Bioengineering, Seoul National University)
Park, Sung-Ryeol (Department of Chemistry and Nano Science, Ewha Womans University)
Park, Je-Won (Department of Chemistry and Nano Science, Ewha Womans University)
Lee, Eun-Yeol (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Kim, Dong-Myung (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Byung-Gee (Interdisciplinary Programs of Bioengineering, Seoul National University)
Yoon, Yeo-Joon (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 613-616 More about this Journal
Abstract
Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl-D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.
Keywords
Tylosin; combinatorial biosynthesis; Streptomyces venezuelae;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Rodríguez, L., I. Aguirrezabalaga, N. Allende, A. F. Braña, C. Méndez, and J. A. Salas. 2002. Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms. A tool to produce novel glycosylated bioactive compounds. Chem. Biol. 9: 721-729.   DOI
2 Salas, J. A. and C. Méndez. 2007. Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol. 15: 219-232.   DOI   ScienceOn
3 Toshima, K. 2006. Novel glycosylation methods and their application to natural products synthesis. Carbohydr. Res. 341: 1282-1297.   DOI   ScienceOn
4 Yoon, Y. J., J. B. Beck, B. S. Kim, H. Y. Kang, K. A. Reynolds, and D. H. Sherman. 2002. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem. Biol. 9: 203-214.   DOI   ScienceOn
5 Zhao, L., N. L. S. Que, Y. Xue, D. H. Sherman, and H. W. Liu. 1998. Mechanistic studies of desosamine biosynthesis: C-4 deoxygenation precedes C-3 transamination. J. Am. Soc. Chem. 120: 12159-12160.   DOI   ScienceOn
6 Borisova, S. A., L. Zhao, D. H. Sherman, and H. W. Liu. 1999. Biosynthesis of desosamine: Construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett. 1: 133- 136.   DOI   ScienceOn
7 Borisova, S. A., C. Zhang, H. Takahashi, H. Zhang, A. W. Wong, J. S. Thorson, and H. W. Liu. 2006. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: Opportunities, limitations, and mechanistic hypotheses. Angew Chem. Int. Ed. Engl. 45: 2748-2753.   DOI   ScienceOn
8 Chu, D. T. 1999. Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance. Med. Res. Rev. 19: 497-520.   DOI   ScienceOn
9 Corcoran, J. W., M. L. Huber, and F. M. Huber. 1977. Relationship of ribosomal binding and antibacterial properties of tylosin-type antibiotics. J. Antibiot. (Tokyo) 30: 1012-1014.   DOI
10 Hong, J. S. J., S. H. Park, C. Y. Choi, J. K. Sohng, and Y. J. Yoon. 2004. New olivosyl derivatives of methymycin/pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiol. Lett. 238: 291-299.   DOI   ScienceOn
11 Jung, W. S., A. R. Han, J. S. J. Hong, S. R. Park, C. Y. Choi, J. W. Park, and Y. J. Yoon. 2007. Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 76: 1373-1381.   DOI   ScienceOn
12 Langenhan, J. M., B. R. Griffith, and J. S. Thorson. 2005. Neoglycorandomization and chemoenzymatic glycorandomization: Two complementary tools for natural product diversification. J. Nat. Prod. 68: 1696-1711.   DOI   ScienceOn
13 Park, S. R., A. R. Han, Y. H. Ban, Y. J. Yoo, E. J. Kim, and Y. J. Yoon. 2010. Genetic engineering of macrolide biosynthesis: Past advances, current state, and future prospects. Appl. Microbiol. Biotechnol. 85: 1227-1239.   DOI   ScienceOn
14 Lee, S. K., J. W. Park , J. W. Kim, W. S. Jung, S. R. Park, C. Y. Choi, et al. 2006. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Nat. Prod. 69: 847-849.   DOI   ScienceOn
15 O'Hagan, D. 1991. The Polyketide Metabolites. Ellis Horwood, Chichester.