The global market size of AI based SaMD for medical image in 2023 will be anticipated to reach around 620 billion won (518 million dollars). In order for Korean manufacturers to efficiently obtain CE marking for marketing in the EU countries, the paper is to introduce the recommendation and suggestion of how to reclassify SaMD based on classification rules of MDR because, after introducing the Regulation EU 2017/745, classification rules are quite modified and newly added compared to the Directive 93/42/EEC. In addition, the paper is to provide several rules of MDR that may be applicable to decide the classification of SaMD. Lastly, the paper is to examine and demonstrate various secondary data supported by qualitative data because the paper focuses on the suggestion and recommendation with a public trust on the basis of various secondary data conducted by the analysis of field data. In conclusion, the paper found that the previous classification of SaMD followed by the rule of MDD should be reclassified based on the Regulation EU 2017/745. Therefore, the suggestion and recommendation are useful for Korean manufacturers to comprehend the classification of SaMD for marketing in the EU countries.
Kim, Sunghyun;Ma, Pan-Gon;Park, Young-Seok;Yu, Young-Bin;Hwang, Kyu Jam;Kim, Young Kwon
대한의생명과학회지
/
제23권3호
/
pp.223-229
/
2017
Fungal infections by human pathogenic fungi are increasing globally in elderly, children and immune suppressed or deficient patients. Aspergillus fumigatus is one of the well-known pathogenic fungi and causes aspergilloses in human world widely. However, current identification and classification methods based on its phenotypic characteristics still have limitations. Therefore, currently, molecular biological tools using their DNA sequences are used for genotype identification and classification. In the present study, in order to analyze genetic variations of A. fumigatus clinical isolates, a total of six housekeeping genes were amplified by PCR using specific primer pairs and multi-locus sequence typing (MLST) assay. Results from phylogenetic tree analysis showed that most A. fumigatus strains (88.9%) from respiratory specimens were classified into cluster A and B, and approximately half of A. fumigatus strains (46%) from non-respiratory specimens were classified into cluster C and D. Although the sample size was limited, genetic characteristics of A. fumigatus clinical isolates according to their origins were very similar and well-correlated with other clinical data.
When a prescription change occurs in the hospital depending on a patient's improvement status, pharmacists directly classify manually returned pills which are not taken by a patient. There are hundreds of kinds of pills to classify. Because it is manual, mistakes can occur and which can lead to medical accidents. In this study, we have compared YOLO, Faster R-CNN and RetinaNet to classify and detect pills. The data consisted of 10 classes and used 100 images per class. To evaluate the performance of each model, we used cross-validation. As a result, the YOLO Model had sensitivity of 91.05%, FPs/image of 0.0507. The Faster R-CNN's sensitivity was 99.6% and FPs/image was 0.0089. The RetinaNet showed sensitivity of 98.31% and FPs/image of 0.0119. Faster RCNN showed the best performance among these three models tested. Thus, the most appropriate model for classifying pills among the three models is the Faster R-CNN with the most accurate detection and classification results and a low FP/image.
Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
대한의용생체공학회:의공학회지
/
제25권5호
/
pp.323-328
/
2004
대뇌조직 구분을 위한 실험적인 정보를 제공하기 위한 뇌조직 확률 지도를 개발하는 경우 개인마다 구조적으로 다양한 형태를 가진 뇌의 특성과 특히 인종간의 두드러진 차이론 반드시 고려해야 한다 본 연구에서는 특정 그룹에 대한 뇌조직 확률 지도를 제작하는데 필요한 절차를 알아보고 나이에 따른 그룹간의 뇌조직 확률 지도의 구조적인 차이를 살펴보고자 한다 피험자 그룹은 100명의 건강한 한국인이며 나이에 따라 두 그룹으로 분류하였다. 뇌 확률 지도의 기준 좌표계를 설정하기 위해 전체 그룹 내의 모든 피험자의 뇌 영상에 대한 평균 영상을 구하고, 각 뇌 영상을 기준 좌표계로 정규화 시킨다. 정규화 과정에서 얻어진 변환 매개 변수를 미리 각 뇌조직(회질, 백질, 뇌척수액)으로 분할된 피험자의 영상에 적용하고 각 그룹 내에서 변환된 뇌 조직 영상을 평균함으로써 뇌 조직 확률 지도를 완성하였다. 나이에 따른 구조적인 차이를 살펴보기 위해 그룹간 확률 값의 차이 영상을 구하였다. 이전 연구결과에서와 마찬가지로 나이가 증가함에 따라 뇌실이 확대되고 회질의 위축이 전체적인 뇌 영역에서 일어났다. 그러므로 우리는 대뇌 조직 분할을 위해 설험적인 정보들을 사용하고자 할 때는 특정 그룹에 대한 뇌 확률 지도를 사용할 것을 제안한다.
International Journal of Control, Automation, and Systems
/
제3권4호
/
pp.571-579
/
2005
In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.
마이크로어레이는 수만 가지 이상의 DNA 또는 RNA를 기판위에 배열해 놓은 것이며 이 기술을 이용하여 대량의 유전자 발현을 탐색할 수 있게 되었다. 그렇지만 마이크로어레이는 실험자가 탐색하려는 특정 표현형에 대해서 설계된 실험방법을 이용하므로 제한된 숫자의 유전자 발현만을 관찰할 수 있다. 본 논문에서는 MicroRNAs(miRNAs)와 Protein-Protein Interaction(PPI) 정보를 포함하고 있는 데이터베이스를 활용하여 마이크로어레이 데이터의 의미적 확장 방법을 제시하고자 한다. 또한 Online Mendelian Inheritance in Man(OMIM) 및 International Statistical Classification of Diseases and Related Health Problems, $10^{th}$ Revision(ICD-10)을 이용하여 질병 간 유전적 공통점 파악을 시도하였다. 이러한 접근방법을 통하여 새로운 생물학적 시각을 제공할 수 있을 것으로 기대된다.
In the field of prosthesis arm control, the pattern classification of the EMG signal is a required basis process and also the estimation of force from collected EMG data is another necessary duty. But unfortunately, what we've got is not real force but an EMG signal which contains the information of force. This is the reason why we estimate the force from the EMG data. In this paper, when we handle the EMG signal to estimate the force, spatial prewhitening process is applied from which the spatial correlation between the channels are removed. And after the orthogonal transformation which is used in the force estimation process, the transformed signal Is inputed into the probabilistic model for pattern classification. To verify the different results of the multiple channels, SNR(signal to noise ratio) function is introduced.
Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.
In obstetrics, cardiotocography is a procedure to record the fetal heartbeat and the uterine contractions usually during the last trimester of pregnancy. It helps to monitor patterns associated with the fetal activity and to detect the pathologies. In this paper, random forest classifier is used to classify normal, suspicious and pathological patterns based on the features extracted from the cardiotocograms. The results showed that random forest classifier can detect these classes successfully with overall classification accuracy of 93.6%. Moreover, important features are identified to reduce the feature space. It is found that using seven important features, similar classification accuracy can be achieved by random forest classifier (93.3%).
Liver cancer is one of the highest incidents in the world, and the mortality rate is the second most common disease after lung cancer. The purpose of this study is to evaluate the diagnostic ability of deep learning in the classification of malignant and benign tumors in CT images of patients with liver tumors. We also tried to identify the best data processing methods and deep learning models for classifying malignant and benign tumors in the liver. In this study, CT data were collected from 92 patients (benign liver tumors: 44, malignant liver tumors: 48) at the Gil Medical Center. The CT data of each patient were used for cross-sectional images of 3,024 liver tumors. In AlexNet and VggNet, the average of the overall accuracy at each image size was calculated: the average of the overall accuracy of the $200{\times}200$ image size is 69.58% (AlexNet), 69.4% (VggNet), $150{\times}150$ image size is 71.54%, 67%, $100{\times}100$ image size is 68.79%, 66.2%. In conclusion, the overall accuracy of each does not exceed 80%, so it does not have a high level of accuracy. In addition, the average accuracy in benign was 90.3% and the accuracy in malignant was 46.2%, which is a significant difference between benign and malignant. Also, the time it takes for AlexNet to learn is about 1.6 times faster than VggNet but statistically no different (p > 0.05). Since both models are less than 90% of the overall accuracy, more research and development are needed, such as learning the liver tumor data using a new model, or the process of pre-processing the data images in other methods. In the future, it will be useful to use specialists for image reading using deep learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.