Browse > Article
http://dx.doi.org/10.12989/bme.2015.2.3.173

Classification of cardiotocograms using random forest classifier and selection of important features from cardiotocogram signal  

Arif, Muhammad (Department of Computer Science, College of Computer and Information systems, Umm-Alqura University, KSA)
Publication Information
Biomaterials and Biomechanics in Bioengineering / v.2, no.3, 2015 , pp. 173-183 More about this Journal
Abstract
In obstetrics, cardiotocography is a procedure to record the fetal heartbeat and the uterine contractions usually during the last trimester of pregnancy. It helps to monitor patterns associated with the fetal activity and to detect the pathologies. In this paper, random forest classifier is used to classify normal, suspicious and pathological patterns based on the features extracted from the cardiotocograms. The results showed that random forest classifier can detect these classes successfully with overall classification accuracy of 93.6%. Moreover, important features are identified to reduce the feature space. It is found that using seven important features, similar classification accuracy can be achieved by random forest classifier (93.3%).
Keywords
cardiotocography; fetal heart rate; random forest classifier; uterine contractions; biomedical data classification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jezewski, M. and Eski, J.L. (2014), "The influence of cardiotocogram signal feature selection method on fetal state assessment efficacy".
2 Kandaswamy, K.K., Chou, K.C., Martinetz, T., Moller, S., Suganthan, P.N., Sridharan, S. and Pugalenthi, G. (2011), "AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties", J. Theo. Biol., 270(1), 56-62.   DOI
3 Karabulut, E.M. and Ibrikci, T. (2014), "Analysis of cardiotocogram data for fetal distress determination by decision tree based adaptive boosting approach", J. Comput. Commun., 2(09): 32.
4 Kwon, J.Y., Park, I.Y., Shin, J.C., Song, J., Tafreshi, R. and Lim, J. (2012), "Specific change in spectral power of fetal heart rate variability related to fetal acidemia during labor: comparison between preterm and term fetuses", Ear. Human Develop., 88(4), 203-207.   DOI
5 Lees, C., Marlow, N., Arabin, B., Bilardo, C.M., Brezinka, C., Derks, J.B. and Wolf, H. (2013), "Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE)", Ultrasound Obstetric. Gynecol., 42(4), 400-408.   DOI
6 Logier, R., Jonckheere, J.D., Jeanne, M. and Matis, R. (2008), "Fetal distress diagnosis using heart rate variability analysis: design of a high frequency variability index", In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, IEEE.
7 Macones, G.A., Hankins, G.D., Spong, C.Y., Hauth, J. and Moore, T. (2008), "The 2008 National Institute of Child Health and Human Development workshop report on electronic fetal monitoring: update on definitions, interpretation, and research guidelines", J. Obstetric. Gynecol. Neonatal Nurs., 37(5), 510-515.   DOI
8 Menai, M.E.B., Mohder, F.J. and Al-mutairi, F. (2013), "Influence of feature selection on naive Bayes classifier for recognizing patterns in cardiotocograms", J. Med. Bioeng., 2(1).
9 Ocak, H. (2013), "A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being", J. Med. Syst., 37(2), 1-9.   DOI
10 Ozcift, A. (2012), "Enhanced cancer recognition system based on random forests feature elimination algorithm", J. Med. Syst., 36(4), 2577-2585.   DOI
11 Salamalekis, E., Hintipas, E., Salloum, I., Vasios, G., Loghis, C., Vitoratos, N. and Creatsas, G. (2006), "Computerized analysis of fetal heart rate variability using the matching pursuit technique as an indicator of fetal hypoxia during labor", J. Maternal-Fetal Neonatal Med., 19(3), 165-169.   DOI
12 Spencer, J.A. (1993), "Clinical overview of cardiotocography", BJOG: Int. J. Obstetrics Gynaecol., 100(s9), 4-7.   DOI
13 Sundar, C., Chitradevi, M. and Geetharamani, G. (2013), "An overview of research challenges for classification of cardiotocogram data", J. Comput. Sci., 9(2), 198.   DOI
14 Svetnik, V., Wang, T., Tong, C., Liaw, A., Sheridan, R.P. and Song, Q. (2005), "Boosting: An ensemble learning tool for compound classification and QSAR modeling", J. Chem. Inform. Model., 45(3), 786-799.   DOI
15 Tibshirani, R. (1996), Bias, variance and prediction error for classification rules, University of Toronto, Department of Statistics.
16 Ugwumadu, A. (2013), "Understanding cardiotocographic patterns associated with intrapartum fetal hypoxia and neurologic injury", Best Practice Res. Clin. Obstetric. Gynaecol., 27(4), 509-536.   DOI
17 Arif, M., Bilal, M., Kattan, A. and Ahamed, S.I. (2014), "Better physical activity classification using Smartphone acceleration sensor", J. Med. Syst., 38(9), 1-10.   DOI
18 van der Hout-van, M.B., Oei, S.G. and Bovendeerd, P.H. (2012), "A mathematical model for simulation of early decelerations in the cardiotocogram during labor", Med. Eng. Phys., 34(5), 579-589.   DOI
19 Wolpert, D.H. and Macready, W.G. (1999), "An efficient method to estimate bagging's generalization error", Machine Learn., 35(1), 41-55.   DOI
20 Zhou, J. and Sun, S. (2014), "Active learning of Gaussian processes with manifold-preserving graph reduction", Neural Comput. Appl., 25(7-8), 1615-1625.   DOI
21 Ayres-de-Campos, D., Bernardes, J., Garrido, A., Marques-de-Sa, J. and Pereira-Leite, L. (2000), "SisPorto 2.0: a program for automated analysis of cardiotocograms", J. Maternal-Fetal Neonatal Med., 9(5), 311-318.   DOI
22 Ayres-de-Campos, D., Sousa, P., Costa, A. and Bernardes, J. (2008), "Omniview-$SisPorto^{(R)}$ 3.5-a central fetal monitoring station with online alerts based on computerized cardiotocogram+ ST event analysis", J. Perinatal Med., 36(3), 260-264.   DOI
23 Breiman, L. (2001), "Random forests", Machine Learn., 45(1), 5-32.   DOI
24 Brown, R., Wijekoon, J.H., Fernando, A., Johnstone, E.D. and Heazell, A.E. (2014), "Continuous objective recording of fetal heart rate and fetal movements could reliably identify fetal compromise, which could reduce stillbirth rates by facilitating timely management", Med. Hypotheses, 83(3), 410-417.   DOI
25 Chen, X., Ye, Y., Xu, X. and Huang, J.Z. (2012), "A feature group weighting method for subspace clustering of high-dimensional data", Patt0 Recognition, 45(1), 434-446.   DOI
26 Carbonne, B., Langer, B., Goffinet, F., Audibert, F., Tardif, D., Le Goueff, F. and French Study Group on Fetal Pulse Oximetry (1997), "Multicenter study on the clinical value of fetal pulse oximetry", Am. J. Obstetric. Gynecol., 177(3), 593-598.   DOI
27 Chen, C.Y., Yu, C., Chang, C.C. and Lin, C.W. (2014), Comparison of a novel computerized analysis program and visual interpretation of cardiotocography, e112296.
28 Chen, H.Y., Chauhan, S.P., Ananth, C.V., Vintzileos, A.M. and Abuhamad, A.Z. (2011), "Electronic fetal heart rate monitoring and its relationship to neonatal and infant mortality in the United States", Am. J. Obstetric. Gynecol., 204(6), 491-e1.
29 Costa, M.D., Schnettler, W.T., Amorim-Costa, C., Bernardes, J., Costa, A., Goldberger, A.L. and Ayres-de-Campos, D. (2014), "Complexity-loss in fetal heart rate dynamics during labor as a potential biomarker of acidemia", Ear. Human Develop., 90(1), 67-71.   DOI
30 Cruz, R.M., Sabourin, R., Cavalcanti, G.D. and Ren, T.I. (2015), "META-DES: A dynamic ensemble selection framework using meta-learning", Patt. Recognition, 48(5), 1925-1935.   DOI
31 Czabanski, R., Jezewski, J., Matonia, A. and Jezewski, M. (2012), "Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia", Expert Syst. Appl., 39(15), 11846-11860.   DOI
32 Czabanski, R., Jezewski, M., Wrobel, J., Horoba, K. and Jezewski, J. (2008, January), "A neuro-fuzzy approach to the classification of fetal cardiotocograms", In 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Springer Berlin Heidelberg.
33 Georgieva, A., Payne, S.J., Moulden, M. and Redman, C.W. (2013), "Artificial neural networks applied to fetal monitoring in labour", Neural Comput. Appl., 22(1), 85-93.   DOI
34 Dietterich, T.G. (2000), "Ensemble methods in machine learning", In Multiple classifier systems, Springer Berlin Heidelberg.
35 Dietterich, T.G. (2000), "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization", Machine Learn.., 40(2), 139-157.   DOI
36 Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. and Herrera, F. (2012), "A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. Systems, Man, and Cybernetics, Part C: Applications and Reviews", IEEE Trans., 42(4), 463-484.
37 Goncalves, H., Rocha, A.P., Ayres-de-Campos, D. and Bernardes, J. (2006), "Linear and nonlinear fetal heart rate analysis of normal and acidemic fetuses in the minutes preceding delivery", Med. Biol. Eng. Comput., 44(10), 847-855.   DOI
38 Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D. and Alzheimer's Disease Neuroimaging Initiative (2013), "Random forest-based similarity measures for multi-modal classification of Alzheimer's disease", Neuroimage, 65, 167-175.   DOI
39 Grivell, R.M., Alfirevic, Z., Gyte, G.M. and Devane, D. (2010), "Antenatal cardiotocography for fetal assessment", Cochrane Database Syst. Rev., 1.
40 Jezewski, M., Wrobel, J., Labaj, P., Leski, J., Henzel, N., Horoba, K. and Jezewski, J. (2007), "Some practical remarks on neural networks approach to fetal cardiotocograms classification", In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, IEEE.