• Title/Summary/Keyword: biomechanical factor

Search Result 47, Processing Time 0.027 seconds

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis (생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

3-Dimensional Analysis of the Running Motion in the Max-Velocity Phase and the Fatigue Phase During 400m Sprint by Performed Elementary School Athletes (달리기시 최고 속도 및 피로 구간의 3차원 동작 분석)

  • Bae, Sung-Jee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2006
  • This study was conducted to investigate the running motion in the max-velocity phase(150-160m) and the fatigue phase(350-360m) during 400m sprint by performed elementary school athletes. Eighteen elementary school male athletes who achieved at least the 3rd place in the sprint at the Korea Gangwon-Do elementary school track and field meetings during 2004 and 2005 were selected as subjects. The running motions performed by the subjects were recorded using two 8mm high speed cameras at the nominal speed of 100 frames per second. The Direct Linear Transformation technique was adopted from the beginning of filming to the final stage of data extraction. KWON 3D motion analysis package program was used to compute the 3 Dimensional coordinates, smoothing factor in which lowpass filtering method was used and cutoff frequency was 6.0 Hz. The movement patterns during foot touchdown and takeoff for the running stride were related with the biomechanical consideration. Within the limitations of this study it is concluded: In order to increase running velocity, several conditions must be fullfilled at the instant of leg touchdown and takeoff during the fatigue phase(350-360m). First, the body C.O.G(Center of Gravity) height should be raised at the instant of leg touchdown and takeoff during the fatigue phase. Second, the foot contact time should be shortened and the takeoff distance should be increased at the foot takeoff during the fatigue phase. Third, the shank angular velocity with respect to a transverse axis through the center of gravity should be increased during the leg touchdown and takeoff in the fatigue phase. Forth, the active landing style described as clawing the ground with the sole of the foot should be performed during the leg touchdown and takeoff in the fatigue phase) phase. Fifth, In order to increase running velocity in the fatigue phase while taking a slightly greater leg knee angle and body lean angle within the range of the subject's running motion during the fatigue phase would result in greater flight distance.

The use of miniscrew as an anchorage for the orthodontic tooth movement (Miniscrew를 고정원으로 이용한 교정치료)

  • Kyung, Seung-Hyun;Lim, Jung-Ki;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.415-424
    • /
    • 2001
  • Anchorage in orthodontics is very important factor for orthodontist to treat malocclusion from diagnosis and treatment planning to end of treatment. Skeletal anchorage like miniscrew is supposed to be more effective method in anchorage control than conventional anchorage which needs patient's good cooperation. So this article will be mentioned about various clinical application of miniscrew through the general investigation and case reports about orthodontic use of miniscrew, specially about screwing area and clinical consideration of miniscrew's screwing on midpalate. The changes of treatment philosophy and methods by using skeletal anchorage were summarized and following results were obtained. 1. The orthodontic anchorage changed from relative concept to absolute one. 2. Bodily movement of teeth gets easier and determinate force system is possible on biomechanical consideration. 3. Some part of treatment that needs surgical intervention is possible by just orthodontic treatment.

  • PDF

Changes in Medio-lateral Knee Joint Reaction Force of Patients with Over-pronation during Gait Due to Insole Parameters - A Case Study (인솔 설계 변수에 따른 발목 과-회내 환자의 보행 시 좌우 방향 무릎 관절 하중의 변화 - 사례 연구)

  • Lee, Sang-Jun;Baek, Seung-Yeob;Son, Jin-Kyou;Kim, Dong-Wook;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2012
  • The ankle over-pronation causes the mechanical overloading transferred to proximal areas (i.e. knees or hips) over time. Thus, the over-pronation is recognized as a contributory factor in a wide variety of musculo-skeletal pathologies in lower extremities. Commonly, over-pronated ankles are treated using specially designed insoles that support medial heels and correct the posture of lower limbs. However, the biomechanical effects of the insoles are not yet fully understood, so there still are controversies whether such insoles really have clinical significance. In this study, in order to verify the effects of insoles and determine the best shape of the insoles, we examined how the medio-lateral knee joint reaction force changes due to insole conditions through a case study about a subject. As a result, it is revealed that the medial heel post, which drastically reduced the peak medio-lateral knee joint reaction force, has significant effects on the gait of the over-pronated patients. However, in case that the arch support is combined together, the positive effect of the medial heel post may rather decrease.

Fusion Criteria for Posterior Lumbar Interbody Fusion with Intervertebral Cages : The Significance of Traction Spur

  • Kim, Kyung-Hoon;Park, Jeong-Yoon;Chin, Dong-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.328-332
    • /
    • 2009
  • Objective : The purpose of this study was to establish new fusion criteria to complement existing Brantigan-Steffee fusion criteria. The primary purpose of intervertebral cage placement is to create a proper biomechanical environment through successful fusion. The existence of a traction spur is an essential predictable radiologic factor which shows that there is instability of a fusion segment. We studied the relationship between the existence of a traction spur and fusion after a posterior lumbar interbody fusion (PLIF) procedure. Methods : This study was conducted using retrospective radiological findings from patients who underwent a PLIF procedure with the use of a cage without posterior fixation between 1993 and 1997 at a single institution. We enrolled 183 patients who were followed for a minimum of five years after the procedure, and used the Brantigan-Steffee classification to confirm the fusion. These criteria include a denser and more mature bone fusion area than originally achieved during surgery, no interspace between the cage and the vertebral body, and mature bony trabeculae bridging the fusion area. We also confirmed the existence of traction spurs on fusion segments and non-fusion segments. Results : The PLIF procedure was done on a total of 251 segments in 183 patients (71 men and 112 women). The average follow-up period was $80.4{\pm}12.7$ months. The mean age at the time of surgery was $48.3{\pm}11.3$ years (range, 25 to 84 years). Among the 251 segments, 213 segments (84.9%) were fused after five years. The remaining 38 segments (15.1%) were not fused. An analysis of the 38 segments that were not fused found traction spur formation in 20 of those segments (52.6%). No segments had traction spur formation with fusion. Conclusion : A new parameter should be added to the fusion criteria. These criteria should be referred to as 'no traction spur formation' and should be used to confirm fusion after a PLIF procedure.

The Effect of Running Speed and Slope on the Lower Extremity Biomechanics (달리기 속도와 경사가 하지관절의 생체역학에 미치는 영향)

  • Kim, Jongbin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.4
    • /
    • pp.160-167
    • /
    • 2020
  • This study analyzes the effects of changes in running velocity and slope on the biomechanical factors of the lower limb joints. For this purpose, 15 adult males in their 20s ran according to changes in running speed (2.7, 3.3 m/s) and slope ( -9°, -6°, 0°, 6°, 9°) on the treadmill, and their running characteristics (stride length, stride frequency). The range of motion of the lower limb joint and the vertical ground reaction force were greater in UR (p <.05), and the moment of the lower limb joint, braking force, thrust and load factor was large in DR (p <.05). In joint power, the ankle joint was greater in DR, and hip joint was greater in the UR (p <.05). These results show that the injuries of the ankle joint will be greater than other cases when running DR at a speed of 3.3 m/s.

CURRENT REVIEW OF MOLECULAR BIOLOGY IN DISTRACTION OSTEOGENESIS (신연 골형성술에 있어서의 분자생물학적 최신 지견)

  • Jee, Yu-Jin;Song, Hyun-Chul;Kim, Yeo-Gab;Kim, Jin;Kim, Chang-Hyen
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.456-463
    • /
    • 2002
  • Distraction osteogenesis is a well-established clinical treatment for limb length discrepancy and skeletal deformities. Appropriate mechanical tension-stress is believed not to break the callus but rather to stimulate osteogenesis. In contrast to fracture healing, the mode of bone formation in distraction osteogenesis is primarily intramembranous ossification. Although the biomechanical, histological, and ultrastructural changes associated with distraction osteogenesis have been widely described, the basic biology of the process is still not well known. Moreover, the molecular mechanisms in distraction osteogenesis remain largely unclear. Recent studies have implicated the growth factor cascade is likely to play an important role in distraction. And current reserch suggested that mechanical tension-stress modulates cell shape and phenotype, and stimulates the expression of the mRNA for bone matrix proteins. This article presents the hypotheses and current research that have furthered knowledge of the molecular biology that govern distraction osteogenesis. The gene regulation of growth factors and extracellular matrix proteins during distraction osteogenesis are discussed in this article. It is believed that understanding the biomolecular mechanisms that mediate distraction osteogenesis may guide the development of targeted strategies designed to improve distraction osteogenesis and accelerate bone healing.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

Wall shear stress on vascular smooth muscle cells exerts angiogenic effects on extracranial arteriovenous malformations

  • Ryu, Jeong Yeop;Park, Tae Hyun;Lee, Joon Seok;Oh, Eun Jung;Kim, Hyun Mi;Lee, Seok-Jong;Lee, Jongmin;Lee, Sang Yub;Huh, Seung;Kim, Ji Yoon;Im, Saewon;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.115-120
    • /
    • 2022
  • Background In addition to vascular endothelial cells, vascular smooth muscle cells (VSMCs) are subject to continuous shear stress because of blood circulation. The angiogenic properties of VSMCs in extracranial arteriovenous malformations (AVMs) may exceed those of normal blood vessels if the body responds more sensitively to mechanical stimuli. This study was performed to investigate the hypothesis that rapid angiogenesis may be achieved by mechanical shear stress. Methods VSMCs were obtained from six patients who had AVMs and six normal controls. The target genes were set to angiopoietin-2 (AGP2), aquaporin-1 (AQP1), and transforming growth factor-beta receptor 1 (TGFBR1). Reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time PCR were implemented to identify the expression levels for target genes. Immunofluorescence was also conducted. Results Under the shear stress condition, mean relative quantity values of AGP2, AQP1, and TGFBR1 in AVM tissues were 1.927±0.528, 1.291±0.031, and 2.284±1.461 when compared with neutral conditions. The expression levels of all three genes in AVMs were higher than those in normal tissue except for AQP1 under shear stress conditions. Immunofluorescence also revealed increased staining of shear stress-induced genes in the normal tissue and in AVM tissue. Conclusions Shear stress made the VSMCs of AVMs more sensitive. Although the pathogenesis of AVMs remains unclear, our study showed that biomechanical stimulation imposed by shear stress may aggravate angiogenesis in AVMs.