• Title/Summary/Keyword: biomass oil

Search Result 228, Processing Time 0.024 seconds

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

Preparation of Coffee Grounds Activated Carbon-based Supercapacitors with Enhanced Properties by Oil Extraction and Their Electrochemical Properties (오일 추출에 의해 물성이 향상된 커피 찌꺼기 활성탄소기반 슈퍼커패시터 제조 및 그 전기화학적 특성)

  • Kyung Soo Kim;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.426-433
    • /
    • 2023
  • Capacitor performance was considered using coffee grounds-based activated carbon produced through oil extraction and KOH activation to increase the utilization of boiwaste. Oil extraction from coffee grounds was performed by solvent extraction using n-Hexane and isopropyl alcohol solvents. The AC_CG-Hexane/IPA produced by KOH activation after oil extraction increased the specific surface area by up to 16% and the average pore size by up to 2.54 nm compared to AC_CG produced only by KOH activation without oil extraction. In addition, the pyrrolic/pyridinic N functional group of the prepared activated carbon increased with the extraction of oil from coffee grounds. In the cyclic voltage-current method measurement experiment, the specific capacitance of AC_CG-Hexane/IPA at a voltage scanning speed of 10 mV/s is 133 F/g, which is 33% improved compared to the amorphous capacity of AC_CG (100 F/g). The results show improved electrochemical properties by improving the size and specific surface area of the mesopores of activated carbon by removing components from coffee grounds oil and synergistic effects by increasing electrical conductivity with pyrrolic/pyridinic N functional groups. In this study, the recycling method and application of coffee grounds, a bio-waste, is presented, and it is considered to be one of the efficient methods that can be utilized as an electrode material for high-performance supercapacitors.

Effect of Temperatures to Crude Oil Productions with Rapeseed Straw on Application of Hydro-thermal Liquefaction Technology (Hydro-thermal Liquefaction Technology적용 시 유채대를 이용한 Crude oil생산에 미치는 반응온도의 영향)

  • Shin, JoungDu;Hong, Seung-Gil;Kwon, Soon-Ik;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.104-109
    • /
    • 2010
  • Hydro-thermal liquefaction technology for rapeseed straws was investigated the biomass conversion rate with different catalysts and reaction temperatures. NaOH and KOH were used for catalysts, and the reaction temperature were ranged from 180 to $320^{\circ}C$ at every $20^{\circ}C$ of intervals for 10 minutes. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160g), 2,000 mL of distilled water and 10% (wt/wt) of catalyst to plant residue were fed into the reactor. It was observed that the maximum crude oil yield was about 36% at temperature range, $260{\sim}280^{\circ}C$ with KOH and at $300^{\circ}C$ with NaOH, respectively. It was observed that the more calorific values of crude oil, the higher reaction temperature with KOH, but it had the reverse pattern in NaOH.

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties (은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구)

  • In-Jun Hwang;Jae-Rak Jeon;Jinsoo Kim;Seung-Soo Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-216
    • /
    • 2023
  • Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

Preparation and Evaluation of Tabletting properties of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunch (오일팜 EFB(Empty fruit bunch)를 이용한 MCC 제조 및 제제 적용성 평가)

  • Kim, Dong Sung;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The microcrystalline cellulose (MCC) was prepared from oil palm biomass, empty fruit bunch (EFB) for increasing the usability of EFB. The morphological, physical and chemical properties of MCC made from EFB were evaluated by comparing with those of the commercial MCC obtained from AVICEL. The EFB-MCC had the wider distribution in particle size and there were many small particles around $10{\mu}m$. There were no significant differences in the cellulose crytallinity and the chemical composition between EFB-MCC and AVICEL-MCC. The properties of tablet samples made by the common direct compression process were evaluated depending on the types of MCC and the compression pressure during tablet making process. The tablet made of EFB MCC showed the higher compressed structure, which resulted in the less disintegration by the water soaking treatment than those made of Avicel-MCC. The results of this study showed that the EFB-MCC could be utilized as one of the commercial MCC.

Degradation Properties and Production of Fuels from Cellulose - Solvolysis - (셀룰로오스의 분해특성 및 연료물질 생성[II] - 용해분해 반응 -)

  • Lee, Jong-Jib;Lee, Byung-Hak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.159-169
    • /
    • 2005
  • Cellulose, consisted of 45 wt% in wood, is usable as fuels and heavy oil additives if depolymerized to monomer unit, because the chemical structures are similar to high octane materials found in gasoline. In this study, thermochemical degradation by solvolysis reaction of cellulose such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. It was found that the effectiveness of the solvent on the sovolysis reaction was as follows; acetone>n-butanol>tetralin. When acetone was used as a solvent, the highest cellulose conversion was observed to be 91.8% at 500$^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was in the range of 7,330${\sim}$7,410cal/g. The energy yield and mass yield in acetone-solvolysis of cellulose was as high as 66.8% and 37.0 g oil/100g raw material after 40min of reaction at 400$^{\circ}C$. Various aliphatic and aromatic compounds were detected in the cellulose solvolysis products. The major components of the solvolysis products, that could be used as fuel, were mesityl oxide, mesitylene, isophorone.

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhdrogenolysis Method (II) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성 (II))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.80-84
    • /
    • 1991
  • Lignocellulosic biomass including acetosolv ricestraw and spruce lignin were liquefied and converted into liquid hydrocarbons by catalytic hydroliquefaction reaction. These experimental works were carried out in 1-liter-capacity autoclave using 50% tetralin and m-cresol solution respectively as soluble solvent and Ni. Pd. Fe and red mud as catalyst. $H_2$ gas was supplied into the reactor for escaltion of deoxhydroenolysis reaction. Catalyst concentrations were 1 % of raw material based on weight. The ratio between raw materials and soluble solvent are 1g and 10cc. The reaction conditions are 400-$700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure. The highest yield of hydrocarbon, so called "product oil" showed 32% and 5.5% of lowest char formation when red mud was used as catalyst. The product oil yields from those of other catalysts were in the range of 20-29%. The influence of different initial hydrogen pressures was examined in the range d 30-50 atms. A minimum pressure of 35 atms was necessary to obtain a complete recovery of souble solvent for recycling.

  • PDF

Oilspill Damage Assessment of Natural Fisheries Resources by Ecological Models (생태학적 모델을 이용한 유류유출 사고에 의한 자연 수산자원 피해의 추정)

  • YOO Sin jae;SHIN Kyoung Soon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.174-190
    • /
    • 1996
  • Damage assessment based on in situ surveys for oil spills in marine environment is limited by fundamental difficulties as well as tremendous expenses. Except for intertidal zones, the damage is not preserved well. Also such surveys are usually confined to adult organisms. To overcome these limitations a computer model, NRDAM/CME, was developed in the case of USA (Reed et al., 1989), where an acute toxicity data base was used to assess indirect damages through food webs and loss due to recruitment as well as adult losses. In the present study damage assessment of natural biological resources for hypothetical oil spills is attempted using a computer model for hypothetical spills of Bunker C and heavy crude oil. In the model, the logical structure of NRDAM/CME was adopted, and biomass and productivity database were compiled for the Korean waters. The results showed that the damage increased in a nonlinear fashion as the spill amount increased. The magnitude of the damage depended upon the chemical properties of oil viscosity and solubility in particular, which implies that usage of oil dispersant might increase the damage by dispersing oil. The results also indicate that long term damage due to recruitment loss could be greater than short term damage.

  • PDF

Effect of Liquid Fertilizer Application using Fish-meal, Bone-meal and Sesame oil-cake on Seed Germination and Growth of Tomato (어분, 골분 및 참깨박을 이용한 발효액비 제조에 따른 무 발아 및 토마토 생육에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Lee, Cho-Rong;Kong, Min-jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.61-70
    • /
    • 2019
  • This study aimed to investigate the physicochemical characteristics of fish meal, bone meal, and sesame oil cake, which are readily available by-products from agriculture and fisheries, during the process of liquid fertilizer fermentation, and to examine the effects of liquid fertilizer application on seed germination and growth of tomatoes. During processing the fermentation for liquid fertilizers by using fish meal, bone meal, and sesame oil cake liquid fertilizers, the pH of the fertilizer increased in the order of bone meal > fish meal > sesame oil cake, and the concentration increased rapidly up to 30 days in all types of liquid fertilizer. The nitrogen content of the liquid fertilizers increased as fermentation progressed in the order of fish meal > bone meal > sesame oil cake. The phosphorus content increased as fermentation progressed and the highest was 1.0 % in the liquid fertilizer of sesame oil cake. The germination rate and its index of radish seeds were compared for different dilutions of each of the liquid fertilizers. Excluding the 10-fold dilution of the fish meal and oil cake liquid fertilizer, all the treatment groups showed a germination rate ≥ 95 % and the germination index tended to increase with dilution rate of liquid fertilizers. For responses of tomato growth, there were no significant differences among the liquid fertilizer treatment groups; however, the organic content, microbial density, and microbial biomass C in the soil were higher than chemical fertilizer treatment. These results demonstrated that there were differences in the characteristics of liquid fertilizers depending on the materials used, and that liquid fertilizer can be used for nutrition management for the organic crop cultivation.

Esterification of Indonesia Tropical Crop Oil by Amberlyst-15 and Property Analysis of Biodiesel (인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석)

  • Lee, Kyoung-Ho;Lim, Riky;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.324-332
    • /
    • 2019
  • Most countries including Korea and Indonesia have strong policy for implementing biofuels like biodiesel. Shortage of the oil feedstock is the main barrier for increasing the supply of biodiesel fuel. In this study, in order to improve the stability of feedstock supply and lower the biodiesel production cost, the feasibility of biodiesel production using two types of Indonesian tropical crop oils, pressed at different harvesting times, were investigated. R. Trisperma oils, a high productive non-edible feedstocks, were investigated to produce biodiesel by esterification and transesterification because of it's high impurity and free fatty acid contents. the kindly provided oils from Indonesia were required to perform the filtering and water removal process to increase the efficiency of the esterificaton and transesterification reactions. The esterification used heterogeneous acid catalyst, Amberlyst-15. Before the reaction, the acid value of two types oil were 41, 17 mg KOH/g respectively. After the pre-esterification reaction, the acid value of oils were 3.7, 1.8 mg KOH/g respectively, the conversions were about 90%. Free fatty acid content was reduced to below 2%. Afterwards, the transesterification was performed using KOH as the base catalyst for transesterification. The prepared biodiesel showed about 93% of FAME content, and the total glycerol content was 0.43%. It did not meet the quality specification(FAME 96.5% and Total glycerol 0.24%) since the tested oils were identified to have a uncommon fatty acid, generally not found in vegetable oils, ${\alpha}$-eleostearic acid with much contents of 10.7~33.4%. So, it is required to perform the further research on reaction optimization and product purification to meet the fuel quality standards. So if the biodiesel production technology using un-utilized non-edible feedstock oils is successfully developed, stable supply of the feedstock for biodiesel production may be possible in the future.