DOI QR코드

DOI QR Code

Esterification of Indonesia Tropical Crop Oil by Amberlyst-15 and Property Analysis of Biodiesel

인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석

  • Lee, Kyoung-Ho (Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research) ;
  • Lim, Riky (Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research) ;
  • Lee, Joon-Pyo (Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research) ;
  • Lee, Jin-Suk (Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research) ;
  • Kim, Deog-Keun (Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research)
  • 이경호 (한국에너지기술연구원 바이오자원순환연구실) ;
  • ;
  • 이준표 (한국에너지기술연구원 광주바이오에너지연구개발센터) ;
  • 이진석 (한국에너지기술연구원 광주바이오에너지연구개발센터) ;
  • 김덕근 (한국에너지기술연구원 바이오자원순환연구실)
  • Received : 2019.03.08
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

Most countries including Korea and Indonesia have strong policy for implementing biofuels like biodiesel. Shortage of the oil feedstock is the main barrier for increasing the supply of biodiesel fuel. In this study, in order to improve the stability of feedstock supply and lower the biodiesel production cost, the feasibility of biodiesel production using two types of Indonesian tropical crop oils, pressed at different harvesting times, were investigated. R. Trisperma oils, a high productive non-edible feedstocks, were investigated to produce biodiesel by esterification and transesterification because of it's high impurity and free fatty acid contents. the kindly provided oils from Indonesia were required to perform the filtering and water removal process to increase the efficiency of the esterificaton and transesterification reactions. The esterification used heterogeneous acid catalyst, Amberlyst-15. Before the reaction, the acid value of two types oil were 41, 17 mg KOH/g respectively. After the pre-esterification reaction, the acid value of oils were 3.7, 1.8 mg KOH/g respectively, the conversions were about 90%. Free fatty acid content was reduced to below 2%. Afterwards, the transesterification was performed using KOH as the base catalyst for transesterification. The prepared biodiesel showed about 93% of FAME content, and the total glycerol content was 0.43%. It did not meet the quality specification(FAME 96.5% and Total glycerol 0.24%) since the tested oils were identified to have a uncommon fatty acid, generally not found in vegetable oils, ${\alpha}$-eleostearic acid with much contents of 10.7~33.4%. So, it is required to perform the further research on reaction optimization and product purification to meet the fuel quality standards. So if the biodiesel production technology using un-utilized non-edible feedstock oils is successfully developed, stable supply of the feedstock for biodiesel production may be possible in the future.

한국과 인도네시아를 포함한 대부분의 국가는 온실가스 감축을 위해 바이오디젤 같은 바이오연료 보급에 대한 강력한 정책을 추진하고 있다. 하지만, 바이오디젤 보급 확대를 위해서는 원료 부족 문제를 먼저 해결해야 한다. 본 연구에서는 원료 공급 안정성을 개선하고 바이오디젤 생산 가격을 낮추기 위해 비식용이면서 동시에 단위면적당 생산성이 높은 인도네시아 열대작물(R. Trisperma) 오일의 바이오디젤 생산 가능성을 조사하였다. 수확기간이 다른 두 종류의 오일은 많은 불순물과 높은 유리지방산 함량을 가지고 있어 효율적인 바이오디젤 생산을 위해, 에스테르화 반응과 전이에스테르화 반응을 실시하였다. 오일은 반응을 진행하기 앞서 여과와 수분제거 과정을 통해 반응의 효율을 높이고자 하였다. 에스테르화 반응은 불균질계 산 촉매인 Amberlyst-15를 사용하였으며, 반응 전 오일들의 산가는 각각 41, 17 mg KOH / g이었으나, 에스테르화 반응 후 3.7, 1.8 mg KOH/g으로 약 90% 이상의 전환율을 보이며 유리지방산 함량을 2%이하로 감소시켰다. 이후 전이에스테르화 반응은 KOH를 염기 촉매로 사용하여 바이오디젤 합성 실험을 진행하였다. 생성된 바이오디젤은 약 93%의 FAME 함량을 나타냈으며, 총 글리세롤의 함량은 0.43%으로 제품 규격(FAME 96.5%, 총 글리세롤 0.24%)에는 미달되었다. 이는 지방산 조성 분석 결과 일반적으로 관찰되지 않는 특이 지방산인 ${\alpha}$-Eleostearic acid가 10.7~33.4% 포함되어 나타나는 특성으로 판단되며, 추가 반응 최적화 및 분리정제 연구 진행으로 연료품질 규격 달성이 필요한 것으로 나타났다. 기존에 활용되지 못하던 비식용 원료로부터 바이오디젤 생산 기술을 확보할 경우 바이오디젤 보급 확대를 위한 안정적 원료 공급에 기여할 것으로 판단된다.

Keywords

HGOHBI_2019_v36n1_324_f0001.png 이미지

Fig. 1. Gas chromatogtam of R. Trisperma oil(KSO#1).

HGOHBI_2019_v36n1_324_f0002.png 이미지

Fig. 2. Gas chromatogtam of R. Trisperma oil(KSO#2).

HGOHBI_2019_v36n1_324_f0003.png 이미지

Fig. 3. Schematic diagram of Filtration.

HGOHBI_2019_v36n1_324_f0004.png 이미지

Fig. 4. Round bottom flask reactor system[16].

HGOHBI_2019_v36n1_324_f0005.png 이미지

Fig. 5. Acid value of R. Trisperma oil during esterification of KSO#1(left), #2(right).

HGOHBI_2019_v36n1_324_f0006.png 이미지

Fig. 6. FFA conversion of R. Trisperma oil by esterification of KSO#1(left), #2(right).

HGOHBI_2019_v36n1_324_f0007.png 이미지

Fig. 7. FAME contents of R. Trisperma oil biodiesel during transesterification of KSO#1(left), #2(right).

Table 1. Fatty acid compositions of R. Trisperma oil [14]

HGOHBI_2019_v36n1_324_t0001.png 이미지

Table 2. Properties of R. Trisperma oil before and after pre-treatment

HGOHBI_2019_v36n1_324_t0002.png 이미지

Table 3. Total Glycerol contents of R. Trisperma oil biodiesel by transesterification

HGOHBI_2019_v36n1_324_t0003.png 이미지

References

  1. IEA, World Energy Outlook, International Energy Agency, (2009).
  2. Y. -W. E. -S. Song, H. -Y. Kim, "Synthesis of Biodiesel Using Supercritical Fluid", Clean Technol., Vol.11, No.4, pp. 171-179 (2005).
  3. S. -S. Kim, Y. -S. Kim, J. Kim, "Status and Prospect of Biodiesel as a Renewable Energy in Korea", KIC News, Vol.11, No.3, pp. 1-10 (2008).
  4. H. -S. Lee, J. -P. Lee, J. -S. Lee, D. -K. Kim, "Kinetics of esterification of food waste oil by solid acid catalyst and reaction optimization", J. Oil & Applied Science, Vol.34, No.3, pp. 683-693 (2017). https://doi.org/10.12925/JKOCS.2017.34.3.683
  5. S. Gan, H. K. Ng, P. H. Chan, F. L. Leong, "Heterogeneous free fatty acids esterification inwaste cooking oil using ion-exchange resins", Fuel Processing Technology, Vol.102, pp. 67-72 (2012). https://doi.org/10.1016/j.fuproc.2012.04.038
  6. O. Ilgen, "Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst", Fuel Processing Technology, Vol.124, pp. 134-139 (2014). https://doi.org/10.1016/j.fuproc.2014.02.023
  7. M. Chai, Q. Tu, M. Lu, Y. J. Yang, "Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry", Fuel Processing Technology, Vol.125, pp. 106-113 (2014). https://doi.org/10.1016/j.fuproc.2014.03.025
  8. L. Chen, T. Liu, W. Zhang, X. Chen, J. Wang, "Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion", Bioresource Technology. Vol.111, pp. 208 (2012). https://doi.org/10.1016/j.biortech.2012.02.033
  9. D. K. Kim, J. D. Choi, J. Y. Park, J. S. Lee, S. B. Park, S. C. Park, "Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production", Korean Chem. Eng. Res, Vol.47, pp. 762-767 (2009).
  10. A. Kumar, S. Sharma, "An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcal L.): A review", Ind Crops Prod. Vol. 28, pp. 1-10 (2008). https://doi.org/10.1016/j.indcrop.2008.01.001
  11. A. K. Tiwari, A. Kumar, H. Raheman, "Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process", Biomass Bioenergy., Vol.31, pp. 569-575 (2007). https://doi.org/10.1016/j.biombioe.2007.03.003
  12. J. K. Kim, J. Y. Park, C. H. Jeon, K. I. Min, E. S. Yim, C. S. Jung, J. H. Lee, "Fuel Properties of Various Biodiesels Derived Vegetable Oil", J. Kor. Oil Chem. Soc., Vol.30, No.1, pp. 35-48 (2013). https://doi.org/10.12925/jkocs.2013.30.1.035
  13. Y. J. Hyun, "Conversion of Jatropha Oil into Biodiesel in Continuous Process Using Alkali and Mixed Catalysts", J. Kor. Oil Chem. Soc., Vol.26, No.4, pp. 394-399 (2009).
  14. M. Y. Abduh, M. H. Nadia, Syaripudin, R. Manurung, R. E. Putra, "Factors affecting the bioconversion of Philippine tung seed by black soldier fly larvae for the production of protein and oil-rich biomass", J. Asia-Pacific Entomology, Vol.21, pp. 836-842 (2018). https://doi.org/10.1016/j.aspen.2018.06.007
  15. B. R. Moser, "Biodiesel production, properties, and feedstocks", In Vitro Cell. Dev. Biol.-Plant, Vol.45, pp. 229-266 (2009). https://doi.org/10.1007/s11627-009-9204-z
  16. S. M. Kim, D. K. Kim, J. S. Lee, S. C. Park, Y. Y. Lee, "Esterification Reaction of Animal Fat for Bio-diesel Production", Clean Technol., Vol.18, No.1, pp. 102-110 (2012). https://doi.org/10.7464/ksct.2012.18.1.102
  17. American Oil Chemists' Society, "Official Methods and Recommended Practices of the AOCS. AOCS Official Method Cd 3d-63 Acid Value", Champaign, Illinois (2003).
  18. EN 14103, "Fat and oil derivatives. fatty acid methyl esters(FAME). determination of ester and linoleic acid methyl ester contents", European Committe for Standardization, Berlin, (2001).
  19. EN 14105, "Fat and oil derivatives. fatty acid methyl esters(FAME). determination of free and total glycerol and mono-, di-, triglyceride contents", European Committee for Standardization, Berlin, (2001).
  20. J. Y. Park, D. K. Kim, Z. M. Wang, P. Lu, S. C. Park, J. S. Lee, "Production and Characterization of Biodiesel from Tung Oil", Appl. Biochem. Biotechnol, Vol.148, pp. 109-117 (2008). https://doi.org/10.1007/s12010-007-8082-2