• Title/Summary/Keyword: biological stability

Search Result 841, Processing Time 0.028 seconds

Immobilization of Trypsin onto Silk Fibroin Fiber via Spacer Arms

  • Lee, Ki-Hoon;Kang, Gyung-Don;Shin, Bong-Seob;Park, Young-Hwan;Nahm, Joong-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Trypsin can be immobilized on silk fibroin fiber (SFF) by introducing several spacer arms, such as ethylene diamine (ED), bovine serum albumin (BSA) and silk sericin (SS). Direct immobilization on silk fiber (SFFGA) has low activity because of the steric hindrance between the trypsin and substrate. The introduction of spacer arms onto SFF-GA can enhance the activity of trypsin by reducing the steric hindrance. When ED is used as a spacer arm, the activity of trypsin has increased but its stability decreased due to the increased hydrophobicity of SFF. BSA and SS, as a spacer arm, have better results in both activity and stability. SFF-BSA shows some decrease in the specific activity due to improper immobilizatin. SFF-SS maintained 90% of its initial activity even after 12 hrs incubation at $50^{\circ}C$. In the case of repeated hydrolysis of silk sericin with immobilized trypsin, SFF-GA and SFF-ED lost 50% of their initial activity right after first run, whereas SFF-BSA and SFF-SS maintained 80% of their initial activities even after 5 runs. Higher operational stability is due to increased hydrophilicity of SFF by introducing hydrophilic spacer arms such as BSA and SS. The high content of serine in SS increases the hydrophilicity of SFF resulting the best results among other spacer arms.

Enhanced In Vitro Protein Synthesis Through Optimal Design of PCR Primers

  • Ahn Jin-Ho;Son Jeong-Mi;Hwang Mi-Yeon;Kim Tae-Wan;Park Chang-Kil;Choi Cha-Yong;Kim Dong-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.355-359
    • /
    • 2006
  • The functional stability of mRNA is one of the crucial factors affecting the efficiency of in vitro translation. As the rapid degradation of mRNA in the cell extract (S30 extract) causes early termination of the translational reactions, extending the mRNA half-life will improve the productivity of the in vitro protein synthesis. Thus, a simple PCR-based method is introduced to increase the stability of mRNA in an S30 extract. The target genes are PCR-amplified with primers designed to make the ends of the transcribed mRNA molecule anneal to each other. When compared with normal mRNA, the mRNA with the annealing sequences resulted in an approximately 2-fold increase of protein synthesis in an in vitro translation reaction. In addition, sequential transcription and translation reactions in a single tube enabled direct protein expression from the PCR-amplified genes without any separate purification of the mRNA.

Stability of 5-FU and Tegafur in Biological Fluids of Rats (흰쥐 생체시료 중 5-플루오로우라실 및 테가푸르의 안정성)

  • Jang, Ji-Hyun;Park, Jong-Kook;Kang, Jin-Hyoung;Chung, Suk-Jae;Shim, Chang-Koo;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • 5-Fluorouracil (5-FU) is an antimetabolite anticancer agent active against many types of solid tumors. Tegafur (TF), a prodrug of 5-FU, is frequently used in combination with uracil as dihydropyrimidine dehydrogenase (DPD) inhibitory fluoropyrimidine. We studied the stability of 5-FU and TF in biological fluids of rats and determined their bioavailability (BA) and excretion into bile, and urine. The drug concentrations were analyzed by an HPLC method. At room temperature, there was a 14-30% decrease in the concentration of 5-FU and TF in bile, urine, and plasma specimen at 10 and $100\;{\mu}g/ml$ over 240 min. No significant difference was noted among the sample types or between two different concentrations of 10 and $100{\mu}g/ml$. The decrease in drug concentration was significantly less in samples kept on ice (6-12%) for both drugs. These data indicate that biological fluid samples containing 5-FU or TF in plasma, urine, or bile should be placed on ice during the sample collection. Following these storage guidelines, samples were collected after administration 50 mg/kg of each drug via i.v. or oral route. BA was 1.5 folds greater for TF (60%) than that of 5-FU (42%). Approximately 0.52 and 3.3% of the i.v. doses of 5-FU and TF was excreted into bile, respectively. Renal clearance of 5-FU was about 16% of its total body clearance. These results suggest that instability of 5-FU and TF in biological fluids should be considered in pharmacokinetic or pharmacogenomic studies.

Comparison of clustering methods of microarray gene expression data (마이크로어레이 유전자 발현 자료에 대한 군집 방법 비교)

  • Lim, Jin-Soo;Lim, Dong-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Cluster analysis has proven to be a useful tool for investigating the association structure among genes and samples in a microarray data set. We applied several cluster validation measures to evaluate the performance of clustering algorithms for analyzing microarray gene expression data, including hierarchical clustering, K-means, PAM, SOM and model-based clustering. The available validation measures fall into the three general categories of internal, stability and biological. The performance of clustering algorithms is evaluated using simulated and SRBCT microarray data. Our results from simulated data show that nearly every methods have good results with same result as the number of classes in the original data. For the SRBCT data the best choice for the number of clusters is less clear than the simulated data. It appeared that PAM, SOM, model-based method showed similar results to simulated data under Silhouette with of internal measure as well as PAM and model-based method under biological measure, while model-based clustering has the best value of stability measure.

Mechanical Property and Thermal Stability of Epoxy Composites Containing Poly(ether sulfone) (폴리에테르설폰이 도입된 에폭시 복합재의 열 안정성 및 기계적 특성)

  • Lee, Si-Eun;Park, Mi-Seon;Jeong, Euigyung;Lee, Man Young;Lee, Min-Kyung;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.426-432
    • /
    • 2015
  • Poly(ether sulfone) (PES) embedded diglycidylether of bisphenol-A (DGEBA) epoxy composites were fabricated for improving its mechanical properties and thermal stability. The mechanical properties such as tensile, flexural and impact strength of the composites changed significantly with the introduction of PES. The value of the fracture toughness of this composite also was increased remarkably about 24%. Thermal stability of PES/epoxy composites also improved 12%, which was calculated with integral procedural decomposition temperature (IPDT). From the differential scanning calorimeter (DSC) result, the curing temperature and curing heat decreased according to the increase of PES contents. These were attributed to the good distribution and the formation of the semi-interpenetrating polymer networks (semi-IPNs) composed of the epoxy network and linear PES.

Nanobiocatalyst-Linked Immunosorbent Assay(NBC-LISA) (나노바이오촉매 기반 효소결합면역흡착검사)

  • Lee, Inseon;Hwang, Sang Youn;Kim, Jungbae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.387-392
    • /
    • 2011
  • Enzymes are being used in various fields due to their unique property of substrate specificity. Enzyme-linked immunosorbent assay(ELISA) has enabled the detection of various antigens by reporting the binding event of antigen and antibody via enzyme-catalyzed reaction. However, the sensitivity improvement of conventional ELISA has been limited because only one enzyme molecule is conjugated to one molecule of antibody. To overcome this limitation and further improve the sensitivity of ELISA, there have been efforts to increase the number ratio of enzymes to antibody. Recently, the nanobiocatalytic approaches, with their successful enzyme stabilization, improved the performance stability as well as sensitivity in a modified protocol of ELISA. The present paper introduces the basic principle of ELISA, and the recent efforts to improve sensitivity and performance stability of ELISA by using the nanobiocatalytic approaches.

Evaluation of Mechanical Characteristic and Biological Stability of Dental Alloys by the Manufacture Method (가공방법에 따른 치과용 합금의 기계적 특성 및 생물학적 안정성 평가)

  • Kim, Chi-Young;Chung, In-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • The material of the dental prosthesis was required bio-compatibility for biological, chemical, and physical stabilities. This study was conducted the stability evaluation of mechanical, biological characteristics through comparing Co-Cr alloy(SC group), Ti alloy(ST group) made by the selective laser melting method with Co-Cr alloy(CC group), Ni-Cr alloy(CN group) made by the casting method. Modulus of elasticity for mechanical characteristic evaluation was measured by the tensile test. And we conducted the release material analysis using lactic acid-NaCl solution for the evaluation of biological stability and were observed cytotoxicity through the content of this release medium. Taking these results into account, the Co-Cr alloy made by the selective laser melting method was observed modulus of elasticity higher than he Co-Cr alloy made by the casting method. And the Co-Cr alloy made by the selective laser melting method had more superior biological stability than the other groups as the result of cytotoxicity evaluation through the release material analysis. By this results, we think that alloys made by the selective laser melting method can be applied as materials for making the dental prosthesis.

Biomimetic control for redundant and high degree of freedom limb systems: neurobiological modularity

  • Giszter, Simon F.;Hart, Corey B.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.169-184
    • /
    • 2011
  • We review the current understanding of modularity in biological motor control and its forms, and then relate this modularity to proposed modular control structures for biomimetic robots. We note the features that are different between the robotic and the biological 'designs' with features which have evolved by natural selection, and note those aspects of biology which may be counter-intuitive or unique to the biological controls as we currently understand them. Biological modularity can be divided into kinematic modularity comprised of strokes and cycles: primitives approximating a range of optimization criteria, and execution modularity comprised of kinetic motor primitives: muscle synergies recruited by premotor drives which are most often pulsatile, and which have the biomechanical effect of instantiating a visco-elastic force-field in the limb. The relations of these identified biological elements to kinematic and force-level motor primitives employed in robot control formulations are discussed.

Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kang, Seong-Woo;Kim, Seung-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.522-525
    • /
    • 2006
  • Biodiesel conversion from soybean oil reached a maximum of 70% at 18 h using immobilized 1,3-specific Rhizopus oryzae lipase alone. Biodiesel conversion failed to reach 20% after 30 h when immobilized nonspecific Candida rugosa lipase alone was used. To increase the biodiesel production yield, a mixture of immobilized 1,3-specific R. oryzae lipase and nonspecific C. rugosa lipase was used. Using this mixture a conversion of greater than 99% at 21 h was attained. When the stability of the immobilized lipases mixture was tested, biodiesel conversion was maintained at over 80% of its original conversion after 10 cycles.

Resilience and Resistance of Biological Community : Application for Stream Ecosystem Health Assessment (생물 군집의 회복력 및 저항력 : 하천생태계 건전성 평가를 위한 응용성)

  • Ro, Tae-Ho
    • Journal of Environmental Policy
    • /
    • v.1 no.1
    • /
    • pp.91-110
    • /
    • 2002
  • Ecosystem health assessment is an emerging concept regarded as a useful diagnostic tool for evaluating ecosystems. The stability of ecosystem is the main theme in the assessment. Generally, two components - resilience and resistance - are involved in the mechanism of ecosystem stability. In this study, relative degrees of the resistance and the resilience were quantified for most aquatic Insects Inhabiting running waters in Korea. A total of 34 groups were newly categorized based on previous studies, and a conceptual model has been produced. The model was applied for the aquatic insect communities inhabiting different streams and demonstrated that each stream ecosystem possessed different degrees of stability. This study also indicated that it was possible to compare stabilities of different ecosystems using relative degrees of resilience and resistance. Using the conceptual model, suitable conservation and management strategies could be recommended in ecological assessments. The model can be used as a stepping-stone for developing more comprehensive methodology that objectively diagnoses and evaluates the ecosystem stability.

  • PDF