Browse > Article
http://dx.doi.org/10.12989/sss.2011.7.3.169

Biomimetic control for redundant and high degree of freedom limb systems: neurobiological modularity  

Giszter, Simon F. (Neurobiology and Anatomy, Drexel University College of Medicine)
Hart, Corey B. (Neurobiology and Anatomy, Drexel University College of Medicine)
Publication Information
Smart Structures and Systems / v.7, no.3, 2011 , pp. 169-184 More about this Journal
Abstract
We review the current understanding of modularity in biological motor control and its forms, and then relate this modularity to proposed modular control structures for biomimetic robots. We note the features that are different between the robotic and the biological 'designs' with features which have evolved by natural selection, and note those aspects of biology which may be counter-intuitive or unique to the biological controls as we currently understand them. Biological modularity can be divided into kinematic modularity comprised of strokes and cycles: primitives approximating a range of optimization criteria, and execution modularity comprised of kinetic motor primitives: muscle synergies recruited by premotor drives which are most often pulsatile, and which have the biomechanical effect of instantiating a visco-elastic force-field in the limb. The relations of these identified biological elements to kinematic and force-level motor primitives employed in robot control formulations are discussed.
Keywords
motor primitives; synergies; pattern generators; stability; hierarchy; modularity; degrees of freedom;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bradley, N.S. (2003), "Connecting the dots between animal and human studies of locomotion. Focus on Infants adapt their stepping to repeated trip-inducing stimuli", J. Neurophysiol., 90(4), 2088-2089.   DOI   ScienceOn
2 Brookfield, J.F.Y. (2009), "Evolution and evolvability: celebrating Darwin 200", Biol. Lett., 5, 44-46.   DOI   ScienceOn
3 Brown, G.D., Yamada, S. and Sejnowski, T.J. (2001), "Independent components analysis (ICA) at the neural cocktail party", Trends Neurosci., 24, 54-63.   DOI   ScienceOn
4 Burdet, E. and Milner, T.E. (1998), "Quantization of human motions and learning of accurate movements", Biol. Cybern., 78, 307-318.   DOI   ScienceOn
5 Calabretta, R., Ferdinando, A.D., Wagner, G.P. and Parisi, D. (2003), "What does it take to evolve behaviorally complex organisms?", Biosystems., 69(2-3), 245-62.   DOI
6 Calabretta, R., Nolfi, S., Parisi, D. and Wagner, G.P. (2000), "Duplication of modules facilitates the evolution of functional specialization", Artif. Life., 6(1), 69-84.   DOI   ScienceOn
7 Callebaut, W. and Rasskin-Gutman, D. (2005), Modularity: Understanding the Development and Evolution of Natural Complex Systems., MIT Press.
8 Cappellini, G., Ivanenko, Y.P., Poppele, R.E. and Lacquaniti, F. (2006), "Motor patterns in human walking and running", J. Neurophysiol., 95(6), 3426-3437.   DOI   ScienceOn
9 Chabra, M. and Jacobs, R.A. (2006), "Properties of synergies arising from a theory of optimal motor behavior", Neural Comput.,18, 2320-2342.   DOI   ScienceOn
10 Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A. and Bizzi, E. (2009), "Stability of muscle synergies for voluntary actions after cortical stroke in humans", Proc. Natl. Acad. Sci. USA., 106(46), 19563-19568.   DOI   ScienceOn
11 Clarac, F., Brocard, F. and Vinay, L. (2004), "The maturation of locomotor networks", Prog. Brain. Res., 143, 57-66.   DOI
12 Clewley, R.H., Guckenheimer, J.M. and Valero-Cuevas, F.J. (2008), "Estimating effective degrees of freedom in motor systems", IEEE T. Bio-med. Eng., 55(2), 430-442.   DOI
13 Colgate, J.E. and Hogan, N. (1988), "Robust control of dynamically interacting systems", Int. J. Control, 48(1), 65-88.   DOI   ScienceOn
14 Collins, J.J. (1995), "The redundant nature of locomotor optimization laws", J. Biomech., 28, 251-267.   DOI   ScienceOn
15 Conditt, M.A. and Mussa-Ivaldi, F.A. (1999), "Central representation of time during motor learning", Proc. Natl. Acad. Sci. U.S.A., 96(20), 11625-11630.   DOI   ScienceOn
16 Dasen, J.S., Liu, J.P. and Jessell, T.M. (2003), "Motor neuron columnar fate imposed by sequential phases of Hox-c activity", Nature, 425, 926-933.   DOI   ScienceOn
17 d'Avella, A. and Bizzi, E. (2005), "Shared and specific muscle synergies in natural motor behaviors", Proc. Natl. Acad. Sci. U.S.A., 102(8), 3076-3081.   DOI   ScienceOn
18 d'Avella, A., Fernandez, L., Portone, A. and Lacquaniti, F. (2008), "Modulation of phasic and tonic muscle synergies with reaching direction and speed", J. Neurophysiol., 100(3), 1433-1454.   DOI   ScienceOn
19 Dominici, N., Ivanenko, Y.P. and Lacquaniti, F. (2007), "Control of foot trajectory in walking toddlers: adaptation to load changes", J. Neurophysiol., 97(4), 2790-2801.   DOI   ScienceOn
20 Flash, T. and Hochner, B. (2005), "Motor primitives in vertebrates and invertebrates", Curr. Opin. Neurobiol., 15(6), 660-666.   DOI   ScienceOn
21 Flash, T. and Hogan, N. (1985), "The coordination of arm movements: an experimentally confirmed mathematical model", J. Neurosci., 5(7), 1688-703.
22 Giszter, S.F. (2008), "Motor Primitives", Encyclopedia of Neuroscience,(Ed. Squire, L.R.), Academic Press, Oxford.
23 Giszter, S.F., Mussa-Ivaldi, F.A. and Bizzi, E. (1993), "Convergent force fields organized in the frog spinal cord", J. Neurosci., 13, 467-491.
24 Giszter, S.F., Moxon, K.A., Rybak, I. and Chapin, J.K. (2001), "Neurobiological and neurorobotic approaches to design of a controller for a humanoid motor system", Robot. Auton. Syst., 37, 219-235.   DOI   ScienceOn
25 Giszter, S.F. and Kargo, W.J. (2000), "Conserved temporal dynamics and vector superposition of primitives in frog wiping reflexes during spontaneous extensor deletions", Neurocomputing, 32-33, 775-783.   DOI
26 Giszter, S.F. and Kargo, W.J. (2001), "Modeling of dynamic controls in the frog wiping reflex: force-field level controls", Neurocomputing, 38-40, 1239-1247.   DOI
27 Giszter, S.F., Moxon, K.A., Rybak, I. and Chapin, J.K. (2000), "A neurobiological perspective on design of humanoid robots and their components", IEEE Intell. Syst., 15(4), 64-69.   DOI   ScienceOn
28 Giszter, S.F., Patil, V. and Hart, C.B. (2007b), "Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective", Prog. Brain. Res., 165, 323-346.   DOI
29 Giszter, S.F., Hart, C.B. and Silfies, S. (2010), "Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man", Exp. Brain. Res., 200(3-4), 283-306.   DOI
30 Gorassini, M.A., Prochazka, A., Hiebert, G.W. and Gauthier, M.J. (1994), "Corrective responses to loss of ground support during walking. I. Intact cats", J. Neurophysiol., 71(2), 603-610.   DOI
31 Gottlieb, G.L. (1998), "Muscle activation patterns during two types of voluntary single-joint movement", J. Neurophysiol., 80, 1860-1867.   DOI
32 Grillner, S., Perret, C. and Zangger, P. (1976), "Central generation of locomotion in the spinal dogfish", Brain Res. 109(2), 255-269.   DOI   ScienceOn
33 Hart, C.B. and Giszter, S.F. (2004), "Modular premotor drives and unit bursts as primitives for frog motor behaviors", J. Neurosci, 24(22), 5269-82.   DOI   ScienceOn
34 Hart, C.B. and Giszter, S.F. (2010), "A neural basis for motor primitives in the spinal cord", J. Neurosci, 30(4), 1322-1336.   DOI   ScienceOn
35 Huang, X. and Xie, Y.M. (2010), "Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load", Struct. Eng. Mech.,. 34(5), 581-595.   DOI
36 Hogan, N. (1984), "An organizing principle for a class of voluntary movements", J. Neurosci, 4(11), 2745-2754.
37 Hogan, N. (1985), "The mechanics of multi-joint posture and movement control", Biol. Cybern., 52(5), 315-331.   DOI   ScienceOn
38 Hogan, N. and Sternad, D. (2007), "On rhythmic and discrete movements: reflections, definitions and implications for motor control", Exp. Brain Res., 181(1), 13-30.   DOI   ScienceOn
39 Ijspeert, A., Nakanishi, J. and Schaal, S. (2003), "Learning attractor landscapes for learning motor primitives", (Eds. Becker, S., Thrun, S., Obermayer, K.), Advances in Neural Information Processing Systems 15, MIT Press, Cambridge, MA.
40 Ivanenko, Y.P., Dominici, N., Cappellini, G. and Lacquaniti, F. (2005), "Kinematics in newly walking toddlers does not depend upon postural stability", J. Neurophysiol., 94(1), 754-763.   DOI   ScienceOn
41 Kargo, W.J. and Giszter, S.F. (2000), "Rapid corrections of aimed movements by combination of force-field primitives", J. Neurosci., 20, 409-426.
42 Kargo, W.J. and Giszter, S.F. (2008), "Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal-cord", J. Neurosci., 28(10), 2409-2425.   DOI   ScienceOn
43 Kargo, W.J., Ramakrishnan, A., Hart, C.B., Rome, L. and Giszter, S.F. (2009), "A simple experimentally-based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs", J. Neurophysiol., 103(1), 573-590.
44 Kargo, W.J. and Rome, L. (2002), "Functional morphology of proximal hindlimb muscles in the frog rana Pipiens", J. Exp. Biol., 205(14), 1987-2004.
45 Karniel, A. and Mussa-Ivaldi, F.A. (2003), "Sequence, time, or state representation: how does the motor control system adapt to variable environments?", Biol. Cybern., 89(1), 10-21.
46 Krishnamoorty, C.S. (2001), "Structural optimization in practice: Potential applications of genetic algorithms", Struct. Eng. Mech., 11(2), 151-170   DOI
47 Kelso, J.A., Holt, K.G., Rubin, P. and Kugler, P.N. (1981), "Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data", J. Mot. Behav., 13(4), 226-261.   DOI
48 Kiehn, O., Hounsgard, J. and Sillar, K.T. (1997), "Basic building blocks of vertebrate CPGs", (Eds. Stein, P.S.G., Grillner, S, Selverston, A.I and Stuart, D.G), Neurons, Networks and Motor Behavior, MIT press, Cambridge, MA, 47-60.
49 Koditschek, D.E., Full, R.J. and Buehler, M. (2004), "Mechanical aspects of legged locomotion control", Arthropod Struct. Dev., 33(3), 251-272.   DOI   ScienceOn
50 Krouchev, N., Kalaska, J.F. and Drew, T. (2006), "Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition", J. Neurophysiol., 96(4), 1991-2010.   DOI   ScienceOn
51 Kuo, A.D. (2002), "The relative roles of feedforward and feedback in the control of rhythmic movements", Motor Control., 6(2), 129-145.   DOI
52 Kutch, J.J., Kuo, A.D., Bloch, A.M. and Rymer, W.Z. (2008), "Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation", J. Neurophysiol., 100(5), 2455-2471.   DOI   ScienceOn
53 Lafreniere-Roula, M. and McCrea, D.A. (2005), "Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator", J. Neurophysiol., 94(2), 1120-1132.   DOI   ScienceOn
54 Lemay, M.A. and Grill, W.M. (2004), "Modularity of motor output evoked by intraspinal microstimulation in cats", J. Neurophysiol., 91(1), 502-514.   DOI
55 Liu, D. and Todorov, E. (2007), "Evidence for the flexible sensorimotor strategies predicted by optimal feedback control", J. Neurosci., 27(35), 9354-9368.   DOI   ScienceOn
56 Lockhart, D.B. and Ting, L.H. (2007), "Optimal sensorimotor transformations for balance", Nat. Neurosci., 10(10): 1329-1336.   DOI   ScienceOn
57 Loeb, G.E., He, J. and Levine, W.S. (1989), "Spinal cord circuits: are they mirrors of musculoskeletal mechanics?", J. Mot. Behav., 21(4), 473-491.   DOI
58 Loeb, G.E. (1999), "Asymmetry of hindlimb muscle activity and cutaneous reflexes after tendon transfers in kittens", J. Neurophysiol., 82(6), 3392-3394.   DOI
59 Loeb, G.E. (2000), "Overcomplete musculature or underspecified tasks?" Mot. Control, 4, 81-83.   DOI
60 Loeb, G.E., Brown, I.E. and Cheng, E.J. (1999), "A hierarchical foundation for models of sensorimotor control", Exp. Brain Res., 126(1), 1-18.   DOI   ScienceOn
61 Loeb, G.E., Levine, W.S. and He, J. (1990), "Understanding sensorimotor feedback through optimal control", Cold Spring Harb Symp Quant Biol. 55, 791-803.   DOI   ScienceOn
62 Marder, E. and Bucher, D. (2001), "Central pattern generators and the control of rhythmic Movements", Curr. Biology, 11, 986-996.   DOI   ScienceOn
63 Martin, J.H., Cooper, S.E. and Ghez, C. (1995), "Kinematic analysis of reaching in the cat", Exp. Brain Res. 102(3), 379-392.
64 McCrea, D.A. and Rybak, I.A. (2007), "Modeling the mammalian locomotor CPG: insights from mistakes and perturbations", Prog. Brain Res., 165, 235-253.   DOI
65 Mirone, G. (2009), "Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing", Smart Struct. Syst., 5(6), 645-662.   DOI
66 Muceli, S., Boye, A.T., d'Avella, A. and Farina, D. (2010), "Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane", J Neurophysiol., 103(3), 1532-1542.   DOI   ScienceOn
67 Mussa-Ivaldi, F.A. (1992), "From basis functions to basis fields: Using vector primitives to capture vector patterns", Biol. Cybern., 67, 479-489.   DOI   ScienceOn
68 Mussa-Ivaldi, F.A. and Giszter, S.F. (1992), "Vector field approximation: a computational paradigm for motor control and learning", Biol. Cybern., 67, 491-500.   DOI   ScienceOn
69 Mussa-Ivaldi, F.A. and Bizzi, E. (2000), "Motor learning through the combination of primitives", Philos. T. R. Soc. B., 355(1404), 1755-1769.   DOI   ScienceOn
70 Mussa-Ivaldi, F.A. and Hogan, N. (1991), "Integrable solutions of kinematic redundancy via impedance control", Int. J. Robot. Res.,10, 481-491.   DOI
71 Mussa-Ivaldi, F.A., Giszter, S.F. and Bizzi, E. (1994), "Linear combination of primitives in vertebrate motor control", Proc. Nat. Acad. Sci., USA., 91, 7534-7538.   DOI   ScienceOn
72 Nishikawa, K.C., Anderson, C.W., Deban, S.M. and O'Reilly, J.C. (1992), "The evolution of neural circuits controlling feeding behavior in frogs", Brain Behav. Evol., 40(2-3), 125-140.   DOI   ScienceOn
73 Pai, D.K. (2010), "Muscle mass in musculoskeletal models", J. Biomech., 43(11), 2093-2098.   DOI   ScienceOn
74 Pang, M.Y., Lam, T. and Yang, J.F. (2003), "Infants adapt their stepping to repeated trip-inducing stimuli", J. Neurophysiol., 90(4), 2731-2740.   DOI   ScienceOn
75 Polyakov, F., Stark, E., Drori, R., Abeles, M. and Flash, T. (2009), "Parabolic movement primitives and cortical states: merging optimality with geometric invariance", Biol. Cybern., 100(2), 159-184.   DOI   ScienceOn
76 Prinz, A.A. (2006), "Insights from models of rhythmic motor systems", Curr. Opin. Neurobiol., 16(6): 615-620.   DOI   ScienceOn
77 Quevedo, J., Stecina, K., Gosgnach, S. and McCrea, D.A. (2005), "Stumbling corrective reaction during fictive locomotion in the cat", J. Neurophysiol., 94(3), 2045-2052.   DOI   ScienceOn
78 Raibert, M.H. (1986), Legged Robots that Balance., MIT Press.
79 Rajasekaran, S. (2010), "Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies", Struct. Eng. Mech., 34(5), 597-609.   DOI
80 Richardson, A., Tresch, M.C., Bizzi, E. and Slotine, J.J. (2005), "Stability analysis of nonlinear muscle dynamics using contraction theory", Conf. Proc. IEEE Eng. Med. Biol. Soc. 5, 4986-4989.
81 Sanger, T.D. (1994), "Optimal unsupervised motor learning for dimensionality reduction of nonlinear control systems", IEEE T. Neural Networ., 5(6), 965-973.   DOI   ScienceOn
82 Richardson, A.G., Slotine, J.J., Bizzi, E. and Tresch, M.C. (2005), "Intrinsic musculoskeletal properties stabilize wiping movements in the spinalized frog", J. Neurosci., 25(12), 3181-3191.   DOI   ScienceOn
83 Rohrer, B., Fasoli, S., Krebs, H.I., Hughes, R., Volpe, B., Frontera, W.R., Stein, J. and Hogan, N. (2002), "Smoothness during stroke recovery", J. Neurosci., 22(18), 8297-8304.
84 Sanger, T.D. (2000), "Human arm movements described by a low-dimensional superposition of principal components", J. Neurosci., 20(3), 1066-1072.
85 Schaal, S., Ijspeert, A. and Billard, A. (2003), "Computational approaches to motor learning by imitation", Philos. T. R. Soc. B., 358(1431), 537-547.   DOI   ScienceOn
86 Schaal, S. and Schweighofer, N. (2005), "Computational motor control in humans and robots", Curr. Opin. Neurobiol., 15(6), 675-682.   DOI   ScienceOn
87 Schouenborg, J. (2004), "Learning in sensorimotor circuits", Curr. Opin. Neurobiol., 14(6), 693-697.   DOI   ScienceOn
88 Sherrington, C.S. (1961), The integrative action of the nervous system, Yale University Press, New Haven, CT.
89 Slotine, J.J. and Lohmiller, W. (2001), "Modularity, evolution, and the binding problem: a view from stability theory", Neural Networ., 14(2), 137-145.   DOI   ScienceOn
90 Sosnik, R., Hauptmann, B., Karni, A. and Flash, T. (2004), "When practice leads to co-articulation: the evolution of geometrically defined movement primitives", Exp. Brain Res., 156, 422-438.   DOI   ScienceOn
91 Tin, C. and Poon, C.S. (2005), "Internal models in sensorimotor integration: perspectives from adaptive control theory", J. Neural Eng., 2, 147-163.   DOI   ScienceOn
92 Ting, L.H. (2007), "Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture", Prog. Brain Res., 165, 299-321.   DOI
93 Todorov, E. and Ghahramani, Z. (2003), "Unsupervised Learning of Sensory-Motor Primitives", Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Cancun, Mexico.
94 Torres-Oviedo, G., Macpherson, J.M. and Ting, L.H. (2006), "Muscle synergy organization is robust across a variety of postural perturbations", J. Neurophysiol., 96(3), 1530-1546.   DOI   ScienceOn
95 Torres-Oviedo, G. and Ting, L.H. (2007), "Muscle synergies characterizing human postural responses", J. Neurophysiol., 98(4), 2144-2156.   DOI   ScienceOn
96 Todorov, E. (2004), "Optimality principles in sensorimotor control", Nat. Neurosci., 7(9), 907-915.   DOI   ScienceOn
97 Todorov, E. and Jordan, M.I. (2002), "Optimal feedback control as a theory of motor coordination", Nat. Neurosci., 5(11), 1226-1235.   DOI   ScienceOn
98 Todorov, E., Li, W. and Pan, X. (2005), "From task parameters to motor synergies: A hierarchical framework for approximately-optimal control of redundant manipulators", J. Robot Syst., 22(11), 691-710.   DOI   ScienceOn
99 Tresch, M.C. and Bizzi, E. (1999), "Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation", Exp. Brain Res., 129(3), 401-416.   DOI
100 Tresch, M.C., Cheung, V.C. and d'Avella, A. (2006), "Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets", J. Neurophysiol., 5(4), 2199-2212.
101 Tresch, M.C. and Jarc, A. (2009), "The case for and against muscle synergies", Curr. Opin. Neurobiol., 19(6), 601-607.   DOI   ScienceOn
102 Valero-Cuevas, F.J. (2009), "A mathematical approach to the mechanical capabilities of limbs and fingers", Adv. Exp. Med. Biol., 629, 619-633.   DOI
103 Valero-Cuevas, F.J, Venkadesan, M. and Todorov, E. (2009), "Structured variability of muscle activations supports the minimal intervention principle of motor control", J. Neurophysiol., 120(1), 59-68.
104 Wagner, G.P., Pavlicev, M. and Cheverud, J.M. (2007), "The road to modularity", Nat. Rev. Genet., 8(12), 921-931.
105 Valero-Cuevas, F.J., Yi, J.W., Brown, D., McNamara, R.V., Paul C. and Lipson, H. (2007), "The tendon network of the fingers performs anatomical computation at a macroscopic scale", IEEE T. Bio-Med. Eng., 54(6), 1161- 1166.   DOI
106 Venkadesan, M. and Valero-Cuevas, F.J. (2008), "Neural control of motion-to-force transitions with the fingertip", J. Neurosci., 28(6), 1366-1373.   DOI   ScienceOn
107 Viviani, P. and Terzuolo, C. (1982), "Trajectory determines movement dynamics", Neuroscience., 7(2), 431-417.   DOI   ScienceOn
108 Wagner, G.P., Mezey, J. and Calabretta, R. (2005), "Natural selection and the origin of modules", (Eds. W. Callebaut, and Rasskin-Gutman, D.), Modularity: Understanding the Development and Evolution of Natural Complex Systems., MIT Press, Cambridge, MA.
109 Wainwright, P.C. (2002), "Evolution of feeding motor patterns in vertebrates", Curr. Opin. Neurobiol., 12, 691-695.   DOI   ScienceOn
110 Wang, W. and Slotine, J.J. (2005), "On partial contraction analysis for coupled nonlinear oscillators", Biol. Cybern., 92(1), 38-53.   DOI   ScienceOn
111 Welch, J.J. and Waxman, D. (2003), "Modularity and the cost of complexity", Evolution, 57, 1723-1734.   DOI
112 Wilson, D.M. (1961), "Central nervous control of flight in a locust", J. Exp Biol., 38, 471-490.
113 Wolpaw, J.R. and Carp, J.S. (1993), "Adaptive plasticity in the spinal cord", Adv. Neurol., 59, 163-174.
114 Wolpert, D.M., Ghahramani, Z. and Flanagan, J.R. (2001), "Perspectives and problems in motor learning", Trends Cogn. Sci., 5(11), 487-494.   DOI   ScienceOn
115 Yang, J.F., Lam, T., Pang, M.Y., Lamont, E., Musselman, K. and Seinen, E. (2004), "Infant stepping: a window to the behaviour of the human pattern generator for walking", Can. J. Physiol. Pharmacol., 82(8-9), 662-674.   DOI   ScienceOn
116 Berniker, M., Jarc, A., Bizzi, E. and Tresch, M.C. (2009), "Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics", Proc. Natl. Acad. Sci. USA., 106(18), 7601-7606.   DOI   ScienceOn
117 Zhao, C.B., Steven, G.P. and Xie, Y.M. (1996), "General evolutionary path for fundamental natural frequencies of structural vibration problems: Towards optimum from below", Struct. Eng. Mech., 4(5), 513-527.   DOI
118 Abbott, L.F. (2006), "Where are the switches on this thing", Problems in Systems Neuroscience, (Eds. J.L. van Hemmen and T.J. Sejnowski), Oxford University Press, 423-431.
119 Bateson, P.J. (2004), "The active role of behaviour in evolution", Biol. Philos., 19, 283-298.   DOI
120 Berkowitz, A. (2008), "Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching", J. Neurophysiol., 99(6), 2887-901.   DOI   ScienceOn
121 Bernstein, N. (1967), The co-ordination and regulation of movements, Pergamon Press, Oxford.
122 Bizzi, E., Mussa-Ivaldi, F.A. and Giszter, S.F. (1991), "Computations underlying the execution of movement: a biological perspective", Science, 253(5017), 287-291.   DOI
123 Bradley, N.S., Solanki, D. and Zhao, D. (2005), "Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion", J. Neurophysiol., 94(6), 4401-11.   DOI   ScienceOn
124 Bradley, N.S., Ryu, Y.U. and Lin, J. (2008), "Fast locomotor burst generation in late stage embryonic motility", J. Neurophysiol., 99(4), 1733-42.   DOI   ScienceOn