DOI QR코드

DOI QR Code

Nanobiocatalyst-Linked Immunosorbent Assay(NBC-LISA)

나노바이오촉매 기반 효소결합면역흡착검사

  • Lee, Inseon (Department of Chemical and Biological Engineering, Korea University) ;
  • Hwang, Sang Youn (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Jungbae (Department of Chemical and Biological Engineering, Korea University)
  • 이인선 (고려대학교 화공생명공학과) ;
  • 황상연 (고려대학교 화공생명공학과) ;
  • 김중배 (고려대학교 화공생명공학과)
  • Published : 2011.08.01

Abstract

Enzymes are being used in various fields due to their unique property of substrate specificity. Enzyme-linked immunosorbent assay(ELISA) has enabled the detection of various antigens by reporting the binding event of antigen and antibody via enzyme-catalyzed reaction. However, the sensitivity improvement of conventional ELISA has been limited because only one enzyme molecule is conjugated to one molecule of antibody. To overcome this limitation and further improve the sensitivity of ELISA, there have been efforts to increase the number ratio of enzymes to antibody. Recently, the nanobiocatalytic approaches, with their successful enzyme stabilization, improved the performance stability as well as sensitivity in a modified protocol of ELISA. The present paper introduces the basic principle of ELISA, and the recent efforts to improve sensitivity and performance stability of ELISA by using the nanobiocatalytic approaches.

생촉매인 효소의 기질선택성은 다양한 분야에서 유용하게 이용되고 있다. 그 중에서도 효소결합면역흡착검사(enzyme-linked immunosorbent assay, ELISA)는 항원항체의 결합을 항체와 공유결합된 효소의 반응으로 나타냄으로써 다양한 항원들의 진단을 가능케 했다. 하지만 기존의 효소결합면역흡착검사는 하나의 항체당 하나의 효소가 결합된 형태이기 때문에 감도(sensitivity)의 증가 폭에 그 한계가 있으며, 이를 극복하기 위한 방안으로 하나의 항체당 결합된 효소의 수를 증가시킴으로써 혁신적인 감도의 향상을 가져오는 연구가 진행되었다. 최근 나노바이오촉매(nanobiocatalyst, NBC) 접근방식을 이용한 효소활성의 안정화는 효소결합면역흡착검사의 감도 향상뿐만 아니라 그 성능의 안정성을 확보할 수 있는 연구결과로 이어지고 있다. 본 총설에서는 일반적인 효소결합면역흡착검사의 기본적인 원리와 감도향상을 위한 연구, 그리고 성능안정성(performance stability)을 향상시키기 위한 나노바이오촉매-결합면역흡착검사(Nanobiocatalyst-Linked Immunosorbent Assay, NBC-LISA)에 대하여 살펴보고자 한다.

Keywords

References

  1. Koeller, K. M. and Wong, C.-H., "Enzymes for Chemical Synthesis," Nature, 409(6817), 232-240(2001). https://doi.org/10.1038/35051706
  2. Duran, N. and Esposito, E., "Potential Applications of Oxidative Enzymes and Phenoloxidase-like Compounds in Wastewater and Soil Treatment: A Review," Appl. Catal., B, 28(2) 83-99(2000). https://doi.org/10.1016/S0926-3373(00)00168-5
  3. Lee, D., Lee, J., Kim, J., Na, H. B., Kim, B., Shin, C. H., Kwak, J. H., Dohnalkova, A., Grate, J. W., Hyeon, T. and Kim, H. S., "Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam," Adv. Mater., 17(23), 2828-2833(2005). https://doi.org/10.1002/adma.200500793
  4. Wang, J., Liu, G. D. and Jan, M. R., "Ultrasensitive Electrical Biosensing of Proteins and DNA: Carbon-nanotube Derived Amplification of the Recognition and Transduction Events," J. Am. Chem. Soc., 126(10), 3010-3011(2004). https://doi.org/10.1021/ja031723w
  5. Piao, Y., Lee, D., Lee, J., Hyeon, T., Kim, J. and Kim, H. S., "Multiplexed Immunoassay Using the Stabilized Enzymes in Mesoporous Silica," Biosens. Bioelectron., 25(4), 906-912(2009). https://doi.org/10.1016/j.bios.2009.09.005
  6. Piao, Y., Lee, D., Kim, J., Hyeon, T. and Kim, H. S., "High Performance Immunoassay Using Immobilized Enzyme in Nanoporous Carbon," Analyst, 134(5) 926-932(2009).
  7. Yalow, R. S. and Berson, S. A., "Assay of Plasma Insulin in Human Subjects by Immunological Methods," Nature, 184(4699), 1648-1649(1959).
  8. Engvall, E. and Perlmann, P., "Enzyme-linked Immunosorbent Assay (ELISA) Quantitative Assay of Immunoglobulin-G," Immunochemistry, 8(9), 871-874(1971). https://doi.org/10.1016/0019-2791(71)90454-X
  9. Vanweeme, B. and Schuurs, A. H. W., "Immunoassay Using Antigen-enzyme Conjugates," FEBS Lett., 15(3), 232-236(1971). https://doi.org/10.1016/0014-5793(71)80319-8
  10. Haas, H. and Hotz, G., "Rapid Detection of HBsAg and anti-HBs by Enzyme-immunoassay," J. Virol. Methods, 2(1-2) 63-69(1980). https://doi.org/10.1016/0166-0934(80)90040-3
  11. Strategic Analysis of the Global In Vitro Diagnostics Market, Frost & Sullivan(2010).
  12. Munge, B., Liu, G. D., Collins, G. and Wang, J., "Multiple Enzyme Layers on Carbon Nanotubes for Electrochemical Detection Down to 80 DNA Copies," Anal. Chem., 77(14), 4662-4666(2005). https://doi.org/10.1021/ac050132g
  13. Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J. D., Kim, S. N., Gillespie, J., Gutkind, J. S., Papadimitrakopoulos, F. and Rusling, J. F., "Carbon Nanotube Amplification Strategies for Highly Sensitive Immunodetection of Cancer Biomarkers," J. Am. Chem. Soc., 128(34), 11199-11205(2006). https://doi.org/10.1021/ja062117e
  14. Malhotra, R., Patel, V., Vaque, J. P., Gutkind, J. S. and Rusling, J. F., "Ultrasensitive Electrochemical Immunosensor for Oral Cancer Biomarker IL-6 Using Carbon Nanotube Forest Electrodes and Multilabel Amplification", Anal. Chem., 82(8), 3118-3123(2010). https://doi.org/10.1021/ac902802b
  15. Monroe, D., "Novel Liposome Immunoassays for Detecting Antigens, Antibodies, and Haptens," J. Liposome Res., 1(3), 339-377 (1989). https://doi.org/10.3109/08982108909036001
  16. Hwang, S., Kumada, Y., Seong, G., Choo, J., Katoh, S. and Lee, E., "Characteristics of a Liposome Immunoassay on a Poly(methyl methacrylate) Surface," Anal. Bioanal. Chem., 389(7), 2251-2257(2007). https://doi.org/10.1007/s00216-007-1614-3
  17. Lee, J., Kim, J., Jia, H. F., Kim, M. I., Kwak, J. H., Jin, S. M., Dohnalkova, A., Park, H. G., Chang, H. N., Wang, P., Grate, J. W. and Hyeon, T., "Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates," Small, 1(7), 744-753(2005). https://doi.org/10.1002/smll.200500035
  18. Kim, M. I., Kim, J., Lee, J., Jia, H., Bin Na, H., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H. G. and Chang, H. N., "Crosslinked Enzyme Aggregates in Hierarchically-ordered Mesoporous Silica: A Simple and Effective Method for Enzyme Stabilization," Biotechnol. Bioeng., 96(2), 210-218(2007). https://doi.org/10.1002/bit.21107
  19. Lee, J., Bin Na, H., Kim, B. C., Lee, J. H., Lee, B., Kwak, J. H., Hwang, Y., Park, J. G., Gu, M. B., Kim, J., Joo, J., Shin, C. H., Grate, J. W. and Hyeon, T., "Magnetically-separable and Highlystable Enzyme System Based on Crosslinked Enzyme Aggregates Shipped in Magnetite-coated Mesoporous Silica," J. Mater. Chem., 19(42), 7864-7870(2009). https://doi.org/10.1039/b909109b
  20. Kim, B. C., Nair, S., Kim, J., Kwak, J. H., Grate, J. W., Kim, S. H. and Gu, M. B., "Preparation of Biocatalytic Nanofibres with High Activity and Stability Via Enzyme Aggregate Coating on Polymer Nanofibres," Nanotechnology, 16(7), S382-S388(2005). https://doi.org/10.1088/0957-4484/16/7/011
  21. Kim, B. C., Lopez-Ferrer, D., Lee, S. M., Ahn, H. K., Nair, S., Kim, S. H., Kim, B. S., Petritis, K., Camp, D. G., Grate, J. W., Smith, R. D., Koo, Y. M., Gu, M. B. and Kim, J., "Highly Stable Trypsinaggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion," Proteomics, 9(7), 1893-1900(2009). https://doi.org/10.1002/pmic.200800591
  22. Kim, B. C., Zhao, X., Ahn, H.-K., Kim, J. H., Lee, H.-J., Kim, K. W., Nair, S., Hsiao, E., Jia, H., Oh, M.-K., Sang, B. I., Kim, B.- S., Kim, S. H., Kwon, Y., Ha, S., Gu, M. B., Wang, P. and Kim, J., "Highly Stable Enzyme Precipitate Coatings and Their Electrochemical Applications", Biosens. Bioelectron., 26(5), 1980-1986 (2011). https://doi.org/10.1016/j.bios.2010.08.068
  23. Kim, J., Jia, H. F. and Wang, P., "Challenges in Biocatalysis for Enzyme-based Biofuel Cells," Biotechnol. Advances, 24(3), 296-308(2006). https://doi.org/10.1016/j.biotechadv.2005.11.006
  24. Kim, J. and Grate, J. W., "Single-enzyme Nanoparticles Armored by a Nanometer-scale Organic/inorganic Network," Nano Lett., 3(9), 1219-1222(2003). https://doi.org/10.1021/nl034404b