• 제목/요약/키워드: biological reduction

검색결과 1,235건 처리시간 0.024초

Characteristics of transmission efficiency in power driveline of agricultural tractors

  • I. H. Ryu;Kim, D. C.;Kim, K. U.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.132-138
    • /
    • 2000
  • Complex gear shifting and high speed-reduction ratio reduce the transmission efficiency in power driveline of agricultural tractors. According to a field test, the power transmission efficiency of a tractor in transporting operations was estimated about 70%. However, the actual efficiency was found by the experiment to fluctuate in a range of 56 to 87%. Therefore, the constant efficiency model commonly used for a simulation of power drivelines is not likely to simulate its performance more accurately. In order to predict power transmission efficiency more accurately, a new model was proposed and the new concepts of the maximum efficiency and sticking torque were introduced. The error mean between the measured and the predicted efficiencies was about 2.3% in mean. The new model reflecting the transmission characteristics in the power driveline of tractors could be used to analyze and predict the power transmission performance of tractors more accurately.

  • PDF

PCBs 오염토양의 생물학적 처리

  • 나인욱;황경엽;최지원;김선미;최수진
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.49-53
    • /
    • 2006
  • The possibility of removal of PCBs (Polychlorinated Biphenyls) in soil was studied using biological method. The effects of soil and co-substrate on both PCBs reduction rate and chloride ion concentration in soil were investigated. It was shown that PCBs concentration of all the soils used in this study were reduced from 5ppm to below 1ppm after 60days, also chloride ion concentration in slurry increased, Results showed that leaf mold and humic acid as co-substrate do not seem to be effective for biological treatment of PCBs in soil,

  • PDF

Electrochemical Regeneration of FAD by Catalytic Electrode Without Electron Mediator and Biochemical Reducing Power

  • JEON SUNG JIN;SHIN IN HO;SANG BYUNG IN;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.281-286
    • /
    • 2005
  • We created a new graphite-Cu(II) electrode and found that the electrode could catalyze FADH$_2$ oxidation and FAD reduction coupled to electricity production and consumption, respectively. In a fuel cell with graphite-Cu(II) anode and graphite-Fe(III) cathode, the electricity was produced by coupling to the spontaneous oxidation of FADH$_2$ Fumarate and xylose were not produced from the enzymatic oxidation of succinate and xylitol without FAD, respectively, but produced with FAD. The production of fumarate and xylose in the reactor with FAD electrochemically regenerated was maximally 2- 5 times higher than that in the reactor with FAD. By using this new electrode with catalytic function, a bioelectrocatalysts can be engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and FAD can function for biotransformation without an electron mediator and second oxidoreductase for cofactors recycling.

A Development Study on High Quality Drinking Water Production by the Biological Activated Carbon/immersed Membrane Filtration System

  • Inoue, Shiro;Iwai, Tosinori;Isse, Masaaki;Terui, Taturo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2001년도 국제 Workshop:상수원의 현황과 분리막 상수처리(Water Resource and Menbrane Water Treatment)
    • /
    • pp.155-162
    • /
    • 2001
  • Advanced drinking water production systems, which not only good quality product water, but also provide easy management and mainenance of facilities, and operate on a smaller site area, have been expected to be developed for some time. We are going ahead with a program to deveop an advanced drinking water production system, using immersed membrane filtration combined with biological activated carbon, to meet the need described above. The demonstration plant tests been conducted with surface water from the Yodo-river since Dec. 1998 to measure treatment performance, reliability, and controllability of the system. The quality of product water has consistently remained at a very high level for about 2 years under controlled conditions. Results showed that the re-circulation granular biological activated carbon could suppress the increase of membrane pressure difference and promote a reduction of dissolved organic matter. (This work has been conducted along the ACT21 Programs.)

  • PDF

Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors

  • Kim, Z-Hun;Park, Hanwool;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1098-1102
    • /
    • 2016
  • A green microalga, Tetraselmis sp., was cultivated in the coastal seawater of Young-Heung Island using semi-permeable membrane photobioreactors (SPM-PBRs) in different seasons. The microalgae in the SPM-PBRs were able to grow on nutrients diffused into the PBRs from the surrounding seawater through SPMs. The biomass productivity varied depending on the ion permeabilities of the SPMs and environmental conditions, whereas the quality and quantity of fatty acids were constant. The temperature of seawater had a greater influence than solar radiation did on productivity of Tetraselmis sp. in SPM-PBRs. SPM-PBRs could provide technologies for concurrent algal biomass and fatty acids production, and eutrophication reduction in the ocean.

Introduction of a Bacterial Hemoglobin Gene for Improving Bacterial Growth under Hypoxic Condition

  • Chung, Chung-Nam;Yoon, Suk-Ran;Jun, Woo-Jin;Shim, Sang-In;Park, In-Ho;Chung, Jin-Woong
    • 농업생명과학연구
    • /
    • 제43권6호
    • /
    • pp.77-84
    • /
    • 2009
  • Using recombinant DNA technology, the vector system containing minimal fragment of a bacterial hemoglobin gene (vgb) was constructed. When this vector was inserted into Escherichia coli, the growth of the host was significantly improved in both viable cell counts and absorbance measurement, compared to that of the wild type strain. In addition, by minimizing the size of bacterial hemoglobin in the vector, the ability of vgb in growth improvement was augmented, due to the reduction of metabolic burden from the maintenance and replication of the plasmid. By using this system, it is expected that the growth of microorganisms can be improved even in the hypoxic condition.

Polyamine Stimulation of arcA Expression in Escherichia coli

  • Rhee, Mun-Su;Kim, Young-Sik;Park, Seon-Young;Park, Myung-Hun;Kim, Bo-Min;Kang, Seong-Uk;Lee, Kui-Joo;Lee, Jong-Ho
    • Journal of Microbiology
    • /
    • 제40권4호
    • /
    • pp.305-312
    • /
    • 2002
  • The effects of two natural polyamines (putrescine and spermidine) on the synthesis of ArcA, a response regulator of the Arc two-component signal transduction system, were studied using an E. coli mutant deficient in polyamine biosynthesis. Endogenous polyamine deficiency of the mutant resulted in marked reduction in the ArcA level determined by Western blot analysis. Putrescine supplement to the growth medium effectively increased the ArcA level of the mutant in a concentration-dependent manner. Spermidine also stimulated the ArcA level in the mutant to a greater degree than putrescine. Expression of arcA'::lacZ operon fusion in the mutant was stimulated 6-fold and 10-fold by putrescine and spermidine at a 1mM concentration, respectively, indicating that the stimulatory effect of the polyamines on ArcA synthesis is due to transcriptional induction, and that spermidine is a more potent arcA inducer than putrescine. The polyamine-dependent arcA'::lacZ induction was growth-phase-dependent and independent of either arcA or fnr which are two regulators involved in anaerobic stimulation of the Arch level. These results suggested that putrescine and spermidine polyamines may be potential intracellular signal molecules in the control of arcA expression, and thereby may play an important role in cellular metabolism.

Effects of Gamisoyosan on In Vitro Fertilization and Ovulation of Stressed Mice by Electric Shock

  • Kim, Ji-Yeun;Kwak, Dong-Hoon;Ju, Eun-Jin;Kim, Sung-Min;Lee, Dae-Hoon;Keum, Kyung-Su;Lee, Seo-Ul;Jung, Kyu-Yong;Seo, Byoung-Bu;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제27권11호
    • /
    • pp.1168-1176
    • /
    • 2004
  • Exposure to stress is known to precipitate or exacerbate many reproductive dysfunctions such as dysmenorrhea and infertility. Abnormalities of the reproductive system, as shown by reduced ovulation, fertilization and early embryonic development, are frequently seen in dysmenorrhea and infertility. It has been generally accepted that Gamisoyosan (GSS) is a useful prescription for treating insomnia, dysmenorrhea and infertility induced by a stress. Also GSS has been used traditionally to improve systemic circulation and biological energy production. Based on these, this study investigates whether GSS improved ovarian dysfunction caused by stress in mice. Mice were subjected to stress by electric shock on the foot for 30 min daily for a week and treated with GSS at 500 / body weight per day for one week. Thereafter, changes body weight, adrenal weight, ovulation rate, in vitro and in vivo fertilization, embryonic development and estradiol concentrations were measured. GSS markedly increased the body weight of mice with stress, but not normal mice. The administration of GSS caused a reduction in adrenal weight in stressed mice. GSS also had significant positive effects on ovulation rate, estradiol production, in vivo and in vitro fertilization rates and embryonic development. These results indicate that GSS can improve the reproductive dysfunctions caused by stress, and these may production biological energy.

Reduction of Nitrogen and Phosphorus from Livestock Waste A Major Priority for Intensive Animal Production - Review -

  • Yano, F.;Nakajima, T.;Matsuda, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.651-656
    • /
    • 1999
  • In current animal production in Japan, a large surplus of nitrogen and phosphorus is given to animals as their feed which are mostly imported from outside of our own country. Today, an excess of nitrogen and phosphorus from animal manure has been spread out of the area of animal production and the surroundings. These components have become the major reason for eutrophication of ground, surface and inland water. Nutritional studies for the reduction of nitrogen and phosphorus from animal waste has been done by many researchers. The reduction of excess protein in animal feed and the supplementation of deficient essential amino acids to feed have a possibility to increase the biological value of feed and to reduce nitrogen excretion, especially, via urine. The use of phytase activity to degrade phytate and to release utilizable inorganic phosphorus make it possible to cut an excess supply of feed additive inorganic phosphorus and to reduce phosphorus excretion from animal waste.