Introduction of a Bacterial Hemoglobin Gene for Improving Bacterial Growth under Hypoxic Condition

  • Chung, Chung-Nam (Dep. of Biological Science, Dong-A University) ;
  • Yoon, Suk-Ran (Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jun, Woo-Jin (Dep. of Food and Nutrition, Chonnam National Univ.) ;
  • Shim, Sang-In (Div. of Agriculture, Gyeongsang National Univ.) ;
  • Park, In-Ho (Dep. of Biological Science, Dong-A University) ;
  • Chung, Jin-Woong (Dep. of Biological Science, Dong-A University)
  • Received : 2009.10.12
  • Accepted : 2009.12.18
  • Published : 2009.12.31

Abstract

Using recombinant DNA technology, the vector system containing minimal fragment of a bacterial hemoglobin gene (vgb) was constructed. When this vector was inserted into Escherichia coli, the growth of the host was significantly improved in both viable cell counts and absorbance measurement, compared to that of the wild type strain. In addition, by minimizing the size of bacterial hemoglobin in the vector, the ability of vgb in growth improvement was augmented, due to the reduction of metabolic burden from the maintenance and replication of the plasmid. By using this system, it is expected that the growth of microorganisms can be improved even in the hypoxic condition.

Keywords

Acknowledgement

Supported by : Dong-A University

References

  1. Cheah, U. E., Weigand, W., and B. C. Stark. 1987. Effects of recombinant plasmid size on cellular processes in Escherichia coli. Plasmid 18: 127-134. https://doi.org/10.1016/0147-619X(87)90040-0
  2. Dikshit, K. L. and D. A. Webster. 1988. Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene 70: 377-386. https://doi.org/10.1016/0378-1119(88)90209-0
  3. Geckil, H., Z. Barak, D. M. Chipman, S. O. Erenler, D. A. Webster, and B. C. Stark. 2004. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioproc. and Biosys. Engin. 26: 325-30. https://doi.org/10.1007/s00449-004-0373-1
  4. Imanaka, T. and S. Aiba. 1981. A perspective on the application of genetic engineering: Stability of recombinant plasmid. Ann. N.Y. Acad. Sci. 369: 1-14. https://doi.org/10.1111/j.1749-6632.1981.tb14172.x
  5. Kallio, P. T., D. J. Kim, P. S. Tsai, and J. E. Bailey. 1994. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Europ. J. of Biochem. 219: 201- 208. https://doi.org/10.1111/j.1432-1033.1994.tb19931.x
  6. Khosla, C. and J. E. Bailey. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633-635. https://doi.org/10.1038/331633a0
  7. Khosla, C., J. E. Curtis, J. Demodena, U. Rinas, and J. E. Bailey. 1990. Expression of intracellula protein hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechn.. 8: 849-854. https://doi.org/10.1038/nbt0990-849
  8. Khosravi, M., D. A. Webster, and B. C. Stark. 1990. Presence of the bacterial hemoglobin gene improves a-amylase production of a recombinant Escherichia coli strain. Plasmid 24: 1-5. https://doi.org/10.1016/0147-619X(90)90020-D
  9. Liu, S. C., Y. X. Liu, D. A. Webster, and B. C. Stark. 1994. Sequence of the region downstream of the Vitreoscilla hemoglobin gene: vgb is not part of a multigene operon. Appl. Microbiol. and Biotech.. 42: 302-308.
  10. Mason, C. A. and J. E. Bailey. 1989. Effect of plasmid presence on growth and enzyme activity of E. coli DH5a. Appl. Microbiol. and Biotech. 32: 54-60.
  11. Perutz, M. F. 1986. A bacterial haemoglobin. Nature 322: 405. https://doi.org/10.1038/322405a0
  12. Wakabayashi, S., H. Matsubara, and D. A. Webster. 1986. Primary sequence of dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481-483. https://doi.org/10.1038/322481a0
  13. Webster, D. A. and Y. Orii. 1977. Oxygenated cytochrome o. An active intermediate observed in whole cells of Vitreoscilla. J. of Biol. Chem. 252: 1834-1836.
  14. Wei, M. L., D. A. Webster, and B. C Stark. 1998. Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene: alterations in fermentation pathways. Biotech. & Bioengin. 59: 640-646. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<640::AID-BIT15>3.0.CO;2-D
  15. Woese, C. R., E. Stackebrandt, W. G. Weisburg, B. J. Paster, M. T. Madigan, V. J. Fowler, C. M. Hahn, P. Blanz, R. Gupta, K. H. Nealson, and G. E. Fox. 1984. The phylogeny of purple bacteria: the alpha subdivision. System. & Appl. Microbiol. 5: 315-26. https://doi.org/10.1016/S0723-2020(84)80034-X