• Title/Summary/Keyword: biological nitrogen fixation

Search Result 53, Processing Time 0.029 seconds

Practices of Sustainable Agriculture in Korea With References for the Development of Sustainable Rice Production Systems (한반도에서 지속농업의 실천방안 지속적 벼 생산체계 개발을 중심으로)

  • Choe Zhin Ryong;Kim Jeong Bu;Cho Yong Son
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.288-312
    • /
    • 1998
  • In Korea, chemical fertilizers and agricultural chemicals have had a significant impact on food production and these are today thought to be an indispensable part of modern agriculture. On the other hand, socioeconomical and IMF and WTO status in Korea are constant reminders of the vulnerability of our fossil fuel dependent agriculture. A new crop production system to improve economic, environmental and production efficiency must be exploited. Our particular concern has been given to an integrated cropping system involving recycling of crop residues, soil and N management, biological N fixation and multipurpose legumes. As a new integrated crop production system, a no-till direct-sown rice-vetch relaying cropping system has been proposed in this paper. The formulation of this system is based on the conception that N fertilizers being neither limitlessly available nor affordable, the current high-input crop production systems have produced troubled results severe labour shortage ill rural areas, balance of payment, environmental degradation and reduction of human health far exceed economic concerns. A natural and logical consequence is that long-term sustainability of agricultural systems must rely on the use and effective management of internal resources. Based on the information obtained throughout a series of experiments last years we have proved that the no-till direct-sown rice-vetch relaying cropping system dictates biological alternative which can augment, and in some cases replace, N fertilizers. Comprehensive discussions were made for the proposed system and it concluded that the system can offer an economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources, and consequently improving the farmers as well as the national returns.

  • PDF

Selection of R. japonicum Strains for Developing Soybean Inoculant and Plasmid Characterization (대두접종제(大豆接種劑) 개발(開發)을 위한 우수근류균(優秀根瘤菌)의 선발(選拔) 및 plasmid 특성(特性))

  • Kim, Chang-Jin;Kim, Sung-Hoon;Rhee, Yoon;Yoo, Ick-Dong;Mheen, Tae-Ick
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.149-155
    • /
    • 1985
  • 590 strains of Rhizobia were isolated from root nodules of the legumes collected at 223 sites in Korea. According to their host specificities they were classified into R. japonicum(218 strains), R. phaseoli(101 strains), R. trifolii(97 strains), R. meliloti(4 strains), R. leguminosarium(1 strain), Rhizobium species(101 strains), and unidentified species(159 strains). 3 potent strains R-138, R-168, and R-214 of R. japonicum have been selected based on the infectivity to soybean cultivar and effeciency of nitrogen fixation. It was observed that the fast-growing strains of R. japonicum contained 1 to 4 plasmids of M.W. of 35-300 Md. However, plasmids were hardly detected for the slow-growing strains.

  • PDF

Functional Analysis of Bacillus subtilis Isolates and Biological Control of Red Pepper Powdery Mildew Using Bacillus subtilis R2-1 (Bacillus subtilis 균주의 기능성 분석 및 이를 활용한 고추 흰가루병 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Choi, Eun-Jung;Lee, Min-Ho;Park, Jong-Ho;Han, Eun-Jung;An, Nan-Hee;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.201-209
    • /
    • 2012
  • The multi-function of 18 Bacillus subtilis isolates collected from agricultural extension centers of local government and National Academy of Agricultural Science was investigated by measuring their antifungal activities against five plant pathogens, such as Rhizoctonia solani, Colletotrichum acutatum, Fusarium oxysporum, Magnaporthe oryzae and Phytophthora capsici, phosphorus solubilization ability, production of indole acetic acid (IAA) and siderophore, and nitrogen fixation. The B. subtilis isolates showed antifungal activity against several plant pathogens and nitrogen fixation activity, and produced siderophore and IAA. They could control pepper powdery mildew (Leveillula taurica), but there was no difference in control efficacy among the B. subtilis isolates. In fields, the control efficacy of B. subtilis R2-1 ($10^8$ cells/ml) was compared with two microbial fungicides, Q-pect and Topsid. In 2009, the control efficacy of B. subtilis R2-1 (37.7%) was lower than that of Topsid (47.6%), but higher than that of Q-pect (25.7%). In 2010, the control efficacy of B. subtilis R2-1 (83.3%) was higher than that of Topsid (67.9%). In order to elucidate mode of action of B. subtilis R2-1 for controlling pepper powdery mildew, spore germination rates of pepper powdery mildew pathogen collected on treated leaves was investigated when suspensions of B. subtilis R2-1 and two microbial fungicides (Q-pect and Topsid) were foliar-sprayed. They highly suppressed spore germination of the pathogen with inhibition values of 84.2% for B. subtilis R2-1, 97.9% for Q-pect and 94.7% for Topsid. Further study on the mass-culturing method and formulation is needed for development of a microbial fungicide.

Plant Growth Promoting and Disease Controlling Activities of Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 and Burkholderia stabilis ANG51 Isolated from Soil (토양에서 분리한 Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 및 Burkholderia stabilis ANG51의 식물 생장촉진 활성 및 식물병 방제활성)

  • Kim, Ji-Youn;Kim, Hee Sook;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • This study was conducted to investigate both plant growth-promoting and plant disease- controlling activities of bacterial strains isolated from soil. All the isolated strains were able to grow at various temperatures. All the strains, except ANG40, showed antagonistic effects against various phytopathogenic fungi. This antagonism can be ascribed to the production of siderophores and antibiotic substances. In addition, all the strains showed abilities such as nitrogen fixation, phosphate solubilization, and siderophore production. These results suggest that nitrogen, phosphorus, and iron can be converted into forms that can be easily absorbed by the plants for their growth. Analysis of the growth-promoting properties revealed that ANG51 produced 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) both of which are related to ethylene production. In contrast, the other strains were found to have only IAA-producing ability. Therefore, this study suggests that Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40, and Burkholderia stabilis ANG51, which were selected through analysis of comparative advantages for both plant growth promotion and disease-controlling activity, may be used as biological agents.

Korean Paddy Soil Microbial Community Analysis Method Using Denaturing Gradient Gel Electrophoresis (Denaturing gradient gel electrophoresis를 이용한 한국의 논 토양 미생물 다양성 분석 방법)

  • Choe, Myeongeun;Hong, Sung-Jun;Lim, Jong-Hui;Kwak, Yunyoung;Back, Chang-Gi;Jung, Hee-Young;Lee, In-Jung;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Soil microbes are important integral components of soil ecosystem which have significant and diverse role in organic matter decomposition, nitrogen cycling, and nitrogen fixation. In this study an effective denaturing gradient gel electrophoresis (DGGE) method was employed for paddy soil microbial diversity survey. For optimum paddy soil microbial DNA extraction, different methods such as Lysis buffer, skim milk bead, sodium phosphate buffer, Epicentre Soil Master DNA extraction kit (Epicentre, USA) and Mo Bio Power Soil DNA kit (MO BIO, USA) methods were utilized. Among all the method, using Mo Bio Power Soil kit was most effective. DGGE analysis of Bacteria was carried out at 6% polyacylamide gel and 45-60% denaturing gradient in the optimal conditions. Whereas DGGE analysis of fungi was done at 6% polyacrylamide gel and 45-80% denaturing gradient in the optimal conditions. By applying the above assay, it was found that variation within the microbial community of paddy soil occurs by a factor of time. DGGE assay used in this study through for a variety of soil microbial analysis suggests the potential use of this method.

Effects of Some Pesticides on Korean Paddy Soil Microorganisms (수도용(水稻用) 농약(農藥)의 토양미생물(土壤微生物)에 대(對)한 영향(影響))

  • Roh, Jung-Koo;Baik, Ok-Ryun
    • Applied Biological Chemistry
    • /
    • v.24 no.3
    • /
    • pp.174-180
    • /
    • 1981
  • As the amount of pesticides consumption increases in agriculture, the side effects of pesticides on soil microorganisms have become an essential part in safety evaluation of pesticide for continued soil fertility. In order to establish the method of safety assessment of pesticides in Korea, a series of tests were carried out. Among the paddy pesticides Fujione (Isoprothiolane, fungicide), Ortran (Acephate, insecticide), and Machete (Butachlor, herbicide) were chosen and the effects of above three pesticides on Korean paddy soil microorganisms were studied. The measurements of pesticide effects on the cycling of carbon ($CO_2$ production), nitrogen fixation ($C_2H_2$ reduction), nitrification, and dehydrogenase activity were carried out. These measurements were complemented by evaluation of pesticide effects on viable microbial numbers. Although Fujione reduced the fungi numbers and inhibited nitrogen cycling activities somewhat, no significant adverse effects were show by any of the tested pesticides in our study.

  • PDF

Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi (식물 병원성 곰팡이에 길항작용을 갖는 다양한 Bacillus sp.의 균주 분리와 특성에 관한 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.603-613
    • /
    • 2019
  • This study was carried out to examine the antagonistic effect against phytopathogenic fungi of isolated strains from soil samples collected from Busan, Changwon, and Jeju Island: Botrytis cinerea, Colletotrichum acutatum, Corynespora cassiicola, Fusarium sp., Rhizoctonia solani, Phytophthora capsici, and Sclerotinia sclerotiorum. According to results of our studies, isolated strains showed an antagonistic effect against phytopathogenic fungi. Such an antagonistic effect against phytopathogenic fungi is seen due to the production of siderophores, antibiotic substances, and extracellular amylase, cellulase, protease, and xylanase enzyme activities. Extracellular enzymes produced by isolated strains were significant, given that they inhibited the growth of phytopathogenic fungi by causing bacteriolysis of the cell wall of plant pathogenic fungi. This is essential to break down the cell wall of plant pathogenic fungi and thus help plant growth by converting macromolecules, which cannot be used by the plant for growth, into small molecules. In addition, they are putative candidates as biological agents to promote plant growth and inhibit growth of phytopathogenic fungi through nitrogen fixation, indole-3-acetic acid production, siderophore production, and extracellular enzyme activity. Therefore, this study suggests the possibility of using Bacillus subtilis ANGa5, Bacillus aerius ANGa25, and Bacillus methylotrophicus ANGa27 as new biological agents, and it is considered that further studies are necessary to prove their effect as novel biological agents by standardization of formulation and optimization of selected effective microorganisms, determination of their preservation period, and crop cultivation tests.

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

The Surface Distribution of Dissolved Gases in the Southwestern East Sea: Comparison of the Primary Production and CO2 Absorption in Summer between Coastal Areas and the Ulleung Basin (동해 남서부해역의 표층 용존 기체 분포: 여름철 연안과 울릉분지의 일차생산력과 CO2 흡수 비교)

  • LEE, INHEE;HAHM, DOSHIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2021
  • The global coastal region is considered as a sink for atmospheric CO2. Since most of the studies in the East Sea focused on the Ulleung Basin, the importance of coastal region for carbon cycle has been overlooked. In this study, we compared the biological pump and CO2 absorption between the Ulleung Basin and coastal region by surface measurements of biological O2 supersaturation (𝚫O2/Ar) and partial pressure of CO2 (fCO2). Cold and less saline waters in the coastal regions were in contrast with a warm and saline water in the Ulleung Basin. The coastal waters near Samcheok and Pohang showed higher fluorescence, 𝚫O2/Ar, and lower fCO2 than those in the Ulleung Basin, indicating higher primary production and CO2 absorption in the areas. The average net community production estimated by 𝚫O2/Ar were 19 ± 6 and 60 ± 9 mmol O2 m-2d-1 in the Samcheok and Pohang, respectively, 2-7 times higher than that of 8 ± 4 mmol O2 m-2d-1 in the Ulleung Basin. Similarly, the average CO2 flux between the seawater and atmosphere were -17.1 ± 8.9 and -25.8 ± 13.2 mmol C m-2d-1 in the Samcheok and Pohang, respectively, 4-5 times higher than that of -4.7 ± 2.5 mmol C m-2d-1 in the Ulleung Basin. In the Samcheok and Pohang, degrees of N2 saturation were lower by 3% than that the ambient waters, suggesting the possibility of nitrogen fixation by primary producers.