Genes and microRNAs (miRNAs) have important roles in human oncology. However, most of the biological factors are reported in disperse form which makes it hard to discover the pathology. In this study, genes and miRNAs involved in human endometrial cancer(EC) were collected and formed into regulatory networks following their interactive relations, including miRNAs targeting genes, transcription factors (TFs) regulating miRNAs and miRNAs included in their host genes. Networks are constructed hierarchically at three levels: differentially expressed, related and global. Among the three, the differentially expressed network is the most important and fundamental network that contains the key genes and miRNAs in EC. The target genes, TFs and miRNAs are differentially expressed in EC so that any mutation in them may impact on EC development. Some key pathways in networks were highlighted to analyze how they interactively influence other factors and carcinogenesis. Upstream and downstream pathways of the differentially expressed genes and miRNAs were compared and analyzed. The purpose of this study was to partially reveal the deep regulatory mechanisms in EC using a new method that combines comprehensive genes and miRNAs together with their relationships. It may contribute to cancer prevention and gene therapy of EC.
Kim, Hye-Jin;Kim, Byeong-Nam;Jang, Won-Seuk;Yoo, Sun-K.
Journal of Biomedical Engineering Research
/
v.37
no.2
/
pp.61-67
/
2016
This paper presented a method for random forest based the arrhythmia classification using both heart rate (HR) and heart rate variability (HRV) features. We analyzed the MIT-BIH arrhythmia database which contains half-hour ECG recorded from 48 subjects. This study included not only the linear features but also non-linear features for the improvement of classification performance. We classified abnormal ECG using mean_NN (mean of heart rate), SD1/SD2 (geometrical feature of poincare HRV plot), SE (spectral entropy), pNN100 (percentage of a heart rate longer than 100 ms) affecting accurate classification among combined of linear and nonlinear features. We compared our proposed method with Neural Networks to evaluate the accuracy of the algorithm. When we used the features extracted from the HRV as an input variable for classifier, random forest used only the most contributed variable for classification unlike the neural networks. The characteristics of random forest enable the dimensionality reduction of the input variables, increase a efficiency of classifier and can be obtained faster, 11.1% higher accuracy than the neural networks.
WireWireless sensor networks(WSNs) are generally comprised of densely deployed sensor nodes, which causes highly redundant sensor data transmission and energy waste. Many studies have focused on energy saving in WSNs. However, delay problem also should be taken into consideration for mission-critical applications. In this paper, we propose a BISA (Bio-Inspired Scheduling Algorithm) to reduce the energy consumption and delay for WSNs inspired by biological systems. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission. Through simulations, we observe that the BISA archives energy efficiency and delay guarantees.
Spiking neural network is a neural network that applies the working principle of real brain neurons. Due to the biological mechanism of neurons, it consumes less power for training and reasoning than conventional neural networks. Recently, as deep learning models become huge and operating costs increase exponentially, the spiking neural network is attracting attention as a third-generation neural network that connects convolution neural networks and recurrent neural networks, and related research is being actively conducted. However, in order to apply the spiking neural network model to the industry, a lot of research still needs to be done, and the problem of model retraining to apply a new model must also be solved. In this paper, we propose a method to minimize the cost of model retraining by extracting the weights of the existing trained deep learning model and converting them into the weights of the spiking neural network model. In addition, it was found that weight conversion worked correctly by comparing the results of inference using the converted weights with the results of the existing model.
Due to the polygenic nature of cancer, it is believed that breast cancer is caused by the perturbation of multiple genes and their complex interactions, which contribute to the wide aspects of disease phenotypes. A systems biology approach for the identification of subnetworks of interconnected genes as functional modules is required to understand the complex nature of diseases such as breast cancer. In this study, we apply a 3-step strategy for the interpretation of microarray data, focusing on identifying significantly perturbed metabolic pathways rather than analyzing a large amount of overexpressed and underexpressed individual genes. The selected pathways are considered to be dysregulated functional modules that putatively contribute to the progression of disease. The subnetwork of protein-protein interactions for these dysregulated pathways are constructed for further detailed analysis. We evaluated the method by analyzing microarray datasets of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Using the strategy of microarray analysis, we selected several significantly perturbed pathways that are implicated in the regulation of progression of breast cancers, including the extracellular matrix-receptor interaction pathway and the focal adhesion pathway. Moreover, these selected pathways include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting interesting perturbed pathways that putatively play a role in the progression of breast cancer and provides an improved interpretability of networks of protein-protein interactions.
Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.
An, Kwang-Guk;Lee, Jae-Yon;Bae, Dae-Yeul;Kim, Ja-Hyun;Hwang, Soon-Jin;Won, Doo-Hee;Lee, Jae-Kwan;Kim, Chang-Soo
Journal of Korean Society on Water Environment
/
v.22
no.5
/
pp.796-804
/
2006
The objective of this research was to develop ecological multi-metric models using natural fish assemblages for a diagnosis of current stream health condition, and apply the model to nationwide lotic ecosystems of the Geum River, the Youngsan River, and the Sumjin River. The ecological stream health model was based on the index of biological integrity (IBI), which was originally developed in North American streams by Karr (1981), and the Rapid Bioassessment Protocol (RBP), which was scientifically established by the US EPA (1999). The metric numbers and metric attributes were partially changed for the regional applications, so the scoring criteria was modified for the assessment. Overall, metric values, based on the IBI calculations, reflected conventional water quality characteristics, based on nutrient regime, and agreed with results of staticeco-toxicity tests. Some stations impaired in terms of stream health were identified by the IBI approach, and also major key stressors affecting the stream health were identified by additional evaluations of physical habitats. Our preliminary results suggested that biological integrity in stream ecosystems was largely disturbed by habitat degradation as well as chemical pollutions. This new approach would be used as a key tool for ecological restorations and species conservations in the degraded aquatic ecosystems in Korea and applied for elucidating major causes of ecological disturbances. Ultimately, this approach provides us an effective management strategy of stream ecosystems through establishments of ecological networks in various watersheds.
In this study, rheological properties and flow dynamics in roll coating process of basecoat paints have been investigated for automotive precoated metal (PCM) sheet applications. Various rheological properties for basecoats with three colors (black, blue, and silver), such as shear viscosity data at room temperature and elastic/viscous moduli under thermal curing condition, have been measured using a rotational rheometer. It is found that the relative portion of function groups inside basecoats and their viscosity level have greatly affected the formation of crosslinked networks by thermal curing. Also, operability coating windows for basecoats have been established in three-roll coating process system by observing their flow instabilities such as ribbing and cascade. It is confirmed that rheological approaches applied in this study have been usefully applied to develop environmentally-friendly PCM coating technology and optimally control the coating operations for non-Newtonian PCM paints.
Dandan Wang;Mingkun Guo;Xiangyan Li;Daqing Zhao;Mingxing Wang
Journal of Ginseng Research
/
v.47
no.1
/
pp.54-64
/
2023
Background: Panax ginseng Meyer (P. ginseng) is a traditional natural/herbal medicine. The amelioration on inflammatory bowel disease (IBD) activity rely mainly on its main active ingredients that are referred to as ginsenosides. However, the current literature on gut microbiota, gut microbiota-host co-metabolites, and systems pharmacology has no studies investigating the effects of ginsenoside on IBD. Methods: The present study was aimed to investigate the role of ginsenosides and the possible underlying mechanisms in the treatment of IBD in an acetic acid-induced rat model by integrating metagenomics, metabolomics, and complex biological networks analysis. In the study ten ginsenosides in the ginsenoside fraction (GS) were identified using Q-Orbitrap LC-MS. Results: The results demonstrated the improvement effect of GS on IBD and the regulation effect of ginsenosides on gut microbiota and its co-metabolites. It was revealed that 7 endogenous metabolites, including acetic acid, butyric acid, citric acid, tryptophan, histidine, alanine, and glutathione, could be utilized as significant biomarkers of GS in the treatment of IBD. Furthermore, the biological network studies revealed EGFR, STAT3, and AKT1, which belong mainly to the glycolysis and pentose phosphate pathways, as the potential targets for GS for intervening in IBD. Conclusion: These findings indicated that the combination of genomics, metabolomics, and biological network analysis could assist in elucidating the possible mechanism underlying the role of ginsenosides in alleviating inflammatory bowel disease and thereby reveal the pathological process of ginsenosides in IBD treatment through the regulation of the disordered host-flora co-metabolism pathway.
In previous study about combinatorial optimization problem solver by using neural network, since Hopfield method, to converge into the optimum solution sooner and certainer is regarded as important. Namely, only static states are considered as the information. However, from a biological point of view, the dynamical system has lately attracted attention. Then we propose the "dynamical" combinatorial optimization problem solver using hysteresis neural network. In this article, the proposal system is evaluated by the N-Queen problem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.